Prognostic Value of Left and right ventricular deformation strain analysis on Acute Cellular rejection in Heart Transplant recipients: A 6-year outcome study

Robert G. Chamberlain1, Natalie Edwards1, Samantha N. Doyle1, Y. Wong1, Gregory M. Scalia1, Surendran Sabapathy2, Jonathan Chan1
1Department of Cardiology, The Prince Charles Hospital, Brisbane, Australia
2School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia

Tóm tắt

Abstract Purpose Two-dimensional (2D) strain analysis is a sensitive method for detecting myocardial dysfunction in acute cellular rejection (ACR) from post-transplant complications. This study aims to evaluate the utility of novel left (LV) and right ventricular (RV) strain parameters for prognostic risk stratification associated with ACR burden at 1-year post transplantation. Methods 128 Heart transplant patients, assessed between 2012 and 2018, underwent transthoracic echocardiography and endomyocardial biopsy. 2D strain analysis was performed and history of rejection burden was assessed and grouped according to ACR burden at 1-year post transplantation. The primary endpoint was all-cause mortality at 6-years follow up. Results 21 patients met primary the endpoint. Multivariate analysis of 6-year all-cause mortality showed LV global longitudinal strain (LV GLS) (Hazard Ratio [HR] = 1.21, CI = 1.06–1.49), LV early diastolic strain rate (LV ESr) (HR = 1.31, CI = 1.12–1.54), RV GLS (HR = 1.12, CI = 1.02–1.25) and RV ESr (HR = 1.26, CI = 1.12–1.47) were significant predictors of outcome. Univariate analysis also showed LV GLS, LV ESr, RV GLS and RV ESr were significant predictors of outcome. Optimal cut-off for predicting 6-year mortality for LV GLS by receive operator characteristic was 15.5% (sensitivity: 92%, specificity: 79%). Significant reductions (p < 0.05) in LV GLS, RV GLS and LV and RV ESr between rejection groups were seen. Conclusions Non-invasive LV and RV strain parameters are predictors of mortality in post-transplant patient with ACR. LV GLS and LV ESr are superior to other strain and conventional echo parameters.

Từ khóa


Tài liệu tham khảo

Yamani MH, Yousufuddin M, Starling RC, Tuzcu M, Ratliff NB, Cook DJ, Abdo A, Crowe T, Hobbs R, Rincon G, Bott-Silverman C, McCarthy PM, Young (2004) Does acute cellular rejection correlate with cardiac allograft vasculopathy? J Heart Lung Transplant 23:272-6. doi:https://doi.org/10.1016/S1053-2498(03)00189-X

Raichlin E, Edwards BS, Kremers WK, Clavell AL, Rodeheffer RJ, Frantz RP, Pereira NL, Daly RC, McGregor CG, Lerman A, Kushwaha SS (2009) Acute cellular rejection and the subsequent development of allograft vasculopathy after cardiac transplantation. J Heart Lung Transplant 28:320–327. doi:https://doi.org/10.1016/j.healun.2009.01.006

Patel JK, Kittleson M, Kobashigawa JA (2011) Cardiac allograft rejection. Surgeon 9:160–167. doi:https://doi.org/10.1016/j.surge.2010.11.023

Miller CA, Fildes JE, Ray SG, Doran H, Yonan N, Williams SG, Schmitt M (2013) Non-invasive approaches for the diagnosis of acute cardiac allograft rejection. Heart 99:445–453. doi:https://doi.org/10.1136/heartjnl-2012-302759

Bader FM, Islam N, Mehta NA, Worthen N, Ishihara S, Stehlik J, Gilbert EM, Litwin SE (2011) Noninvasive diagnosis of cardiac allograft rejection using echocardiography indices of systolic and diastolic function. Transpl Proc 43:3877–3881. doi:https://doi.org/10.1016/j.transproceed.2011.09.039

Valantine HA, Yeoh TK, Gibbons R, McCarthy P, Stinson EB, Billingham ME, Popp RL (1991) Sensitivity and specificity of diastolic indexes for rejection surveillance: temporal correlation with endomyocardial biopsy. J Heart Lung Transplant 10:757–765

Kato TS, Oda N, Hashimura K, Hashimoto S, Nakatani T, Ueda HI, Shishido T, Komamura K (2010) Strain rate imaging would predict sub-clinical acute rejection in heart transplant recipients. Eur J Cardiothorac Surg 37:1104–1110. doi:https://doi.org/10.1016/j.ejcts.2009.11.037

Dandel M, Hetzer R (2009) Echocardiographic strain and strain rate imaging–clinical applications. Int J Cardiol 132:11–24. doi:https://doi.org/10.1016/j.ijcard.2008.06.091

Nakai H, Takeuchi M, Nishikage T, Lang RM, Otsuji Y (2009) Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: correlation with diabetic duration. Eur J Echocardiogr 10:926–932. doi:https://doi.org/10.1093/ejechocard/jep097

Clemmensen TS, Logstrup BB, Eiskjaer H, Poulsen SH (2015) Changes in longitudinal myocardial deformation during acute cardiac rejection: the clinical role of two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 28:330–339. doi:https://doi.org/10.1016/j.echo.2014.10.015

Clemmensen TS, Logstrup BB, Eiskjaer H, Poulsen SH (2015) Evaluation of longitudinal myocardial deformation by 2-dimensional speckle-tracking echocardiography in heart transplant recipients: relation to coronary allograft vasculopathy. J Heart Lung Transplant 34:195–203. doi:https://doi.org/10.1016/j.healun.2014.07.008

Chamberlain R, Scalia GM, Shiino K, Platts DG, Sabapathy S, Chan J (2020) Diastolic strain imaging: a new non-invasive tool to detect subclinical myocardial dysfunction in early cardiac allograft rejection. Int J Cardiovasc Imaging 36:317–323. doi:https://doi.org/10.1007/s10554-019-01725-3

Mingo-Santos S, Monivas-Palomero V, Garcia-Lunar I, Mitroi CD, Goirigolzarri-Artaza J, Rivero B, Oteo JF, Castedo E, Gonzalez-Mirelis J, Cavero MA, Gomez-Bueno M, Segovia J, Alonso-Pulpon L (2015) Usefulness of Two-Dimensional Strain Parameters to Diagnose Acute Rejection after Heart Transplantation. J Am Soc Echocardiogr 28:1149–1156. doi:https://doi.org/10.1016/j.echo.2015.06.005

Barakat AF, Sperry BW, Starling RC, Mentias A, Popovic ZB, Griffin BP, Desai MY (2017) Prognostic Utility of Right Ventricular Free Wall Strain in Low Risk Patients After Orthotopic Heart Transplantation. Am J Cardiol 119:1890–1896. doi:https://doi.org/10.1016/j.amjcard.2017.03.003

Sarvari SI, Gjesdal O, Gude E, Arora S, Andreassen AK, Gullestad L, Geiran O, Edvardsen T (2012) Early postoperative left ventricular function by echocardiographic strain is a predictor of 1-year mortality in heart transplant recipients. J Am Soc Echocardiogr 25:1007–1014. doi:https://doi.org/10.1016/j.echo.2012.05.010

Eleid MF, Caracciolo G, Cho EJ, Scott RL, Steidley DE, Wilansky S, Arabia FA, Khandheria BK, Sengupta PP (2010) Natural history of left ventricular mechanics in transplanted hearts: relationships with clinical variables and genetic expression profiles of allograft rejection. JACC Cardiovasc Imaging 3:989–1000. doi:https://doi.org/10.1016/j.jcmg.2010.07.009

Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J, Abrams J, Andersen CB, Angelini A, Berry GJ, Burke MM, Demetris AJ, Hammond E, Itescu S, Marboe CC, McManus B, Reed EF, Reinsmoen NL, Rodriguez ER, Rose AG, Rose M, Suciu-Focia N, Zeevi A, Billingham ME (2005) Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant 24:1710–1720. doi:https://doi.org/10.1016/j.healun.2005.03.019

Clemmensen TS, Logstrup BB, Eiskjaer H, Hoyer S, Poulsen SH (2015) The long-term influence of repetitive cellular cardiac rejections on left ventricular longitudinal myocardial deformation in heart transplant recipients. Transpl Int 28:475–484. doi:https://doi.org/10.1111/tri.12520

Clemmensen TS, Eiskjaer H, Logstrup BB, Ilkjaer LB, Poulsen SH (2017) Left ventricular global longitudinal strain predicts major adverse cardiac events and all-cause mortality in heart transplant patients. J Heart Lung Transplant 36:567–576. doi:https://doi.org/10.1016/j.healun.2016.12.002

Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA, Madsen J, Parameshwar J, Starling RC, Uber PA (2010) International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant 29:717–727. doi:https://doi.org/10.1016/j.healun.2010.05.017

Antonczyk K, Niklewski T, Antonczyk R, Zakliczynski M, Zembala M, Kukulski T (2018) Speckle-Tracking Echocardiography for Monitoring Acute Rejection in Transplanted Heart. Transpl Proc 50:2090–2094. doi:https://doi.org/10.1016/j.transproceed.2018.03.112

Saleh HK, Villarraga HR, Kane GC, Pereira NL, Raichlin E, Yu Y, Koshino Y, Kushwaha SS, Miller FA Jr, Oh JK, Pellikka PA (2011) Normal left ventricular mechanical function and synchrony values by speckle-tracking echocardiography in the transplanted heart with normal ejection fraction. J Heart Lung Transplant 30:652–658. doi:https://doi.org/10.1016/j.healun.2010.12.004

Monivas Palomero V, Mingo Santos S, Goirigolzarri Artaza J, Rodriguez Gonzalez E, Restrepo Cordoba MA, Jimenez Sanchez D, Rivero Arribas B, Garcia Lunar I, Mitroi CD, Sayago Silva I, Cavero Gibanel MA, Gomez Bueno M, Alonso Pulpon LA (2016) J. Segovia Cubero Two-Dimensional Speckle Tracking Echocardiography in Heart Transplant Patients: Two-Year Follow-Up of Right and Left Ventricular Function. Echocardiography 33:703 – 13. doi:https://doi.org/10.1111/echo.13169

Ingvarsson A, Werther Evaldsson A, Waktare J, Nilsson J, Smith GJ, Stagmo M, Roijer A, Radegran G, Meurling CJ (2018) Normal Reference Ranges for Transthoracic Echocardiography Following Heart Transplantation. J Am Soc Echocardiogr 31:349–360. doi:https://doi.org/10.1016/j.echo.2017.11.003

Hiemann NE, Wellnhofer E, Lehmkuhl HB, Knosalla C, Hetzer R, Meyer R (2011) Everolimus prevents endomyocardial remodeling after heart transplantation. Transplantation 92:1165–1172. doi:https://doi.org/10.1097/TP.0b013e3182332886

Armstrong AT, Binkley PF, Baker PB, Myerowitz PD, Leier CV (1998) Quantitative investigation of cardiomyocyte hypertrophy and myocardial fibrosis over 6 years after cardiac transplantation. J Am Coll Cardiol 32:704–710. doi:https://doi.org/10.1016/s0735-1097(98)00296-4

Hiemann NE, Wellnhofer E, Knosalla C, Lehmkuhl HB, Stein J, Hetzer R, Meyer R (2007) Prognostic impact of microvasculopathy on survival after heart transplantation: evidence from 9713 endomyocardial biopsies. Circulation 116:1274–1282. doi:https://doi.org/10.1161/CIRCULATIONAHA.106.647149

Gramley F, Lorenzen J, Pezzella F, Kettering K, Himmrich E, Plumhans C, Koellensperger E, Munzel T (2009) Hypoxia and myocardial remodeling in human cardiac allografts: a time-course study. J Heart Lung Transplant 28:1119–1126. doi:https://doi.org/10.1016/j.healun.2009.05.038

Badano LP, Miglioranza MH, Edvardsen T, Colafranceschi AS, Muraru D, Bacal F, Nieman K, Zoppellaro G, Marcondes Braga FG, Binder T, Habib G, Lancellotti P, Document (2015) European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging 16:919 – 48. doi:https://doi.org/10.1093/ehjci/jev139

Clemmensen TS, Eiskjaer H, Logstrup BB, Tolbod LP, Harms HJ, Bouchelouche K, Hoff C, Frokiaer J, Poulsen SH (2016) Noninvasive Detection of Cardiac Allograft Vasculopathy by Stress Exercise Echocardiographic Assessment of Myocardial Deformation. J Am Soc Echocardiogr 29:480–490. doi:https://doi.org/10.1016/j.echo.2016.01.012

Thellier N, Altes A, Appert L, Binda C, Leman B, Marsou W, Debry N, Joly C, Ennezat PV, Tribouilloy C, Marechaux S (2020) Prognostic Importance of Left Ventricular Global Longitudinal Strain in Patients with Severe Aortic Stenosis and Preserved Ejection Fraction. J Am Soc Echocardiogr 33:1454–1464. doi:https://doi.org/10.1016/j.echo.2020.07.002

Lassen MCH, Biering-Sorensen SR, Olsen FJ, Skaarup KG, Tolstrup K, Qasim AN, Mogelvang R, Jensen JS, Biering-Sorensen T (2019) Ratio of transmitral early filling velocity to early diastolic strain rate predicts long-term risk of cardiovascular morbidity and mortality in the general population. Eur Heart J 40:518–525. doi:https://doi.org/10.1093/eurheartj/ehy164

Lassen MCH, Jensen MT, Biering-Sorensen T, Mogelvang R, Fritz-Hansen T, Vilsboll T, Rossing P, Jorgensen PG (2019) Prognostic value of ratio of transmitral early filling velocity to early diastolic strain rate in patients with Type 2 diabetes. Eur Heart J Cardiovasc Imaging 20:1171–1178. doi:https://doi.org/10.1093/ehjci/jez075

Lassen MCH, Sengelov M, Qasim A, Jorgensen PG, Bruun NE, Olsen FJ, Fritz-Hansen T, Gislason G, Biering-Sorensen T (2019) Ratio of Transmitral Early Filling Velocity to Early Diastolic Strain Rate Predicts All-Cause Mortality in Heart Failure with Reduced Ejection Fraction. J Card Fail 25:877–885. doi:https://doi.org/10.1016/j.cardfail.2019.07.007

Lassen MCH, Skaarup KG, Iversen AZ, Jorgensen PG, Olsen FJ, Galatius S, Biering-Sorensen T (2019) Ratio of Transmitral Early Filling Velocity to Early Diastolic Strain Rate as a Predictor of Cardiovascular Morbidity and Mortality Following Acute Coronary Syndrome. Am J Cardiol 123:1776–1782. doi:https://doi.org/10.1016/j.amjcard.2019.03.004

Nagueh SF, McFalls J, Meyer D, Hill R, Zoghbi WA, Tam JW, Quinones MA, Roberts R, Marian AJ (2003) Tissue Doppler imaging predicts the development of hypertrophic cardiomyopathy in subjects with subclinical disease. Circulation 108:395–398. doi:https://doi.org/10.1161/01.CIR.0000084500.72232.8D

Clemmensen TS, Logstrup BB, Eiskjaer H, Poulsen SH (2016) Serial changes in longitudinal graft function and implications of acute cellular graft rejections during the first year after heart transplantation. Eur Heart J Cardiovasc Imaging 17:184–193. doi:https://doi.org/10.1093/ehjci/jev133