Productive failure in mathematical problem solving

Instructional Science - Tập 38 Số 6 - Trang 523-550 - 2010
Manu Kapur1
1National Institute of Education, Nanyang Technological University, Singapore, Singapore

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amit, M., & Fried, M. N. (2005). Multiple representations in 8th grade algebra classrooms: Are learners really getting it? In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th conference of the international group for the psychology of mathematics education (Vol. 2, pp. 57–64). Melbourne: PME.

Anderson, J. R. (2000). Cognitive psychology and its implications. New York: Worth.

Barron, B. (2003). When smart groups fail. Journal of the Learning Sciences, 12(3), 307–359. doi: 10.1207/S15327809JLS1203_1 .

Brown, A. L. (1992). Design experiments. Journal of the Learning Sciences, 2(2), 141–178. doi: 10.1207/s15327809jls0202_2 .

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.

Bruner, J. S. (1985). Vygotsky: A historical and conceptual perspective. In J. V. Wertsch (Ed.), Culture, communication, and cognition: Vygotskian perspectives (pp. 21–34). Cambridge: Cambridge University Press.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152. doi: 10.1207/s15516709cog0502_2 .

Chi, M. T. H., Glaser, R., & Farr, M. J. (1988). The nature of expertise. Hillsdale: Erlbaum.

Cho, K. L., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology Research and Development, 50(3), 5–22. doi: 10.1007/BF02505022 .

Clifford, M. M. (1984). Thoughts on a theory of constructive failure. Educational Psychologist, 19(2), 108–120.

Cohen, E. G., Lotan, R. A., Abram, P. L., Scarloss, B. A., & Schultz, S. E. (2002). Can groups learn? Teachers College Record, 104(6), 1045–1068. doi: 10.1111/1467-9620.00196 .

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL. Can we support CSCL (pp. 61–91). Heerlen: Open Universiteit Nederland.

Dixon, J. A., & Bangert, A. S. (2004). On the spontaneous discovery of a mathematical relation during problem solving. Cognitive Science, 28, 433–449.

Even, R. (1998). Factors involved in linking representations of functions. The Journal of Mathematical Behavior, 17(1), 105–121. doi: 10.1016/S0732-3123(99)80063-7 .

Fishman, B., Marx, R., Blumenfeld, P., Krajcik, J. S., & Soloway, E. (2004). Creating a framework for research on systemic technology innovations. Journal of the Learning Sciences, 13(1), 43–76. doi: 10.1207/s15327809jls1301_3 .

Garner, W. R. (1974). The processing of information and structure. Potomac: Erlbaum.

Ge, X., & Land, S. M. (2003). Scaffolding students’ problem-solving processes in an ill-structured task using question prompts and peer interactions. Educational Technology Research and Development, 51(1), 21–38. doi: 10.1007/BF02504515 .

Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment? Psychological Review, 62, 32–41. doi: 10.1037/h0048826 .

Goel, V., & Pirolli, P. (1992). The structure of design problem spaces. Cognitive Science, 16, 395–429.

Goldin, G. A. (2002). Representation in mathematical learning and problem solving. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 197–218). Mahwah: Erlbaum.

Greeno, J. G., & Hall, R. P. (1997). Practicing representation: Learning with and about representational forms. Phi Delta Kappan, 78(5), 361–367.

Greeno, J. G., Smith, D. R., & Moore, J. L. (1993). Transfer of situated learning. In D. K. Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 99–167). Norwood: Ablex.

Hardiman, P. T., Dufresne, R., & Mestre, J. P. (1989). The relation between problem categorization and problem solving among experts and novices. Memory & Cognition, 17(5), 627–638.

Hatano, G., & Inagaki, K. (1986). Two courses of expertise. In H. Stevenson, H. Azuma, & K. Hakuta (Eds.), Child development and education in Japan (pp. 262–272). New York: Freeman.

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235–266. doi: 10.1023/B:EDPR.0000034022.16470.f3 .

Janvier, C. (1987). Problems of representation in the teaching and learning of mathematics. Hillsdale: Erlbaum.

Jonassen, D. H. (2000). Towards a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85. doi: 10.1007/BF02300500 .

Kapur, M. (2006). Productive failure. In S. Barab, K. Hay, & D. Hickey (Eds.), Proceedings of the international conference on the learning sciences (pp. 307–313). Mahwah: Erlbaum.

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379–424. doi: 10.1080/07370000802212669 .

Kapur, M., Dickson, L., & Toh, P. Y. (2008). Productive failure in mathematical problem solving. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th annual conference of the cognitive science society (pp. 1717–1722). Austin: Cognitive Science Society.

Kapur, M., & Kinzer, C. (2009). Productive failure in CSCL groups. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 4(1), 21–46.

Kaput, J. (1999). Representations, inscriptions, descriptions and learning: A kaleidoscope of windows. The Journal of Mathematical Behavior, 17(2), 265–281. doi: 10.1016/S0364-0213(99)80062-7 .

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work. Educational Psychologist, 41(2), 75–86. doi: 10.1207/s15326985ep4102_1 .

Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical Review Special Topics-Physics. Education Research, 3, 1–10.

Lampert, M. (2001). Teaching problems and the problems of teaching. New Haven: Yale University Press.

Lesh, R. R., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah: Erlbaum.

Lobato, J. (2003). How design experiments can inform a rethinking of transfer and vice versa. Educational Researcher, 32(1), 17–20. doi: 10.3102/0013189X032001017 .

Marton, F. (2007). Sameness and difference in transfer. Journal of the Learning Sciences, 15(4), 499–535. doi: 10.1207/s15327809jls1504_3 .

McNamara, D. S. (2001). Reading both high-coherence and low-coherence texts: Effects of text sequence and prior knowledge. Canadian Journal of Experimental Psychology, 55(1), 51–62. doi: 10.1037/h0087352 .

Mestre, J. (2005). Transfer of learning from a modern multidisciplinary perspective. Greenwich: Information Age.

Puntambekar, S., & Hübscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational Psychologist, 40(1), 1–12. doi: 10.1207/s15326985ep4001_1 .

Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 423–451. doi: 10.1207/s15327809jls1303_2 .

Scardamalia, M., & Bereiter, C. (2003). Knowledge building. In J. W. Guthrie (Ed.), Encyclopedia of education. New York: Macmillan Reference.

Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217. doi: 10.1111/j.1467-9280.1992.tb00029.x .

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16(4), 475–522. doi: 10.1207/s1532690xci1604_4 .

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129–184. doi: 10.1207/s1532690xci2202_1 .

Spiro, R. J., Feltovich, R. P., Jacobson, M. J., & Coulson, R. L. (1992). Cognitive flexibility, constructivism, and hypertext. In T. M. Duffy & D. H. Jonassen (Eds.), Constructivism and the technology of instruction: A conversation. NJ: Erlbaum.

Tatar, D., Roschelle, J., Knudsen, J., Shechtman, N., Kaput, J., & Hopkins, B. (2008). Scaling up innovative technology-based mathematics. Journal of the Learning Sciences, 17, 248–286. doi: 10.1080/10508400801986090 .

Tharp, R. G., & Gallimore, R. (1982). Inquiry processes in program development. Journal of Community Psychology, 10, 103–118. doi: 10.1002/1520-6629(198204)10:2<103::AID-JCOP2290100202>3.0.CO;2-9 .

VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W. B. (2003). Why do only some events cause learning during human tutoring? Cognition and Instruction, 21(3), 209–249. doi: 10.1207/S1532690XCI2103_01 .

Voss, J. F. (1988). Problem solving and reasoning in ill-structured domains. In C. Antaki (Ed.), Analyzing everyday explanation: A casebook of methods. London: Sage Publications.

Voss, J. F. (2005). Toulmin’s model and the solving of ill-structured problems. Argumentation, 19, 321–329. doi: 10.1007/s10503-005-4419-6 .

Vygotsky, L. S. (1978). Mind in society. Cambridge: Harvard University Press.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry and Allied Disciplines, 17, 89–100. doi: 10.1111/j.1469-7610.1976.tb00381.x .

Zeitz, P. (1999). The art and craft of problem solving. New York: John Wiley.