Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex
Tài liệu tham khảo
Wilson, 1976, Metabolism of alpha-aminoadipic and alpha-ketoadipic acids: studies using rat and beef liver, and human leukocytes, Clin. Chim. Acta, 69, 323, 10.1016/0009-8981(76)90512-X
Burrage, 2014, Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders, Hum. Mol. Genet., 23, R1, 10.1093/hmg/ddu123
Higashino, 1965, Saccharopine, a product of lysine breakdown by mammalian liver, Biochem. Biophys. Res. Commun., 20, 285, 10.1016/0006-291X(65)90361-X
Nishizuka, 1970, Metabolism of the benzene ring of tryptophan (mammals), Methods Enzymol., 17, 463, 10.1016/0076-6879(71)17228-X
Danhauser, 2012, DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria, Am. J. Hum. Genet., 91, 1082, 10.1016/j.ajhg.2012.10.006
Hagen, 2015, Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria, J. Inherit. Metab. Dis., 38, 873, 10.1007/s10545-015-9841-9
Bunik, 2008, Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins, Proteins, 71, 874, 10.1002/prot.21766
Bunik, 2000, Kinetic properties of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii. Evidence for the formation of a precatalytic complex with 2-oxoglutarate, Eur. J. Biochem., 267, 3583, 10.1046/j.1432-1327.2000.01387.x
Sauer, 2011, Therapeutic modulation of cerebral l-lysine metabolism in a mouse model for glutaric aciduria type I, Brain, 134, 157, 10.1093/brain/awq269
Uhlen, 2015, Proteomics. Tissue-based map of the human proteome, Science, 347, 1260419, 10.1126/science.1260419
Uhlen, 2010, Towards a knowledge-based human protein atlas, Nat. Biotechnol., 28, 1248, 10.1038/nbt1210-1248
Mukhopadhyay, 1990, Comparison of lysine and tryptophan catabolizing enzymes in rat and bovine tissues, Experientia, 46, 874, 10.1007/BF01935544
Xu, 2013, DHTKD1 is essential for mitochondrial biogenesis and function maintenance, FEBS Lett., 587, 3587, 10.1016/j.febslet.2013.08.047
Tretter, 2004, Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase, J. Neurosci., 24, 7771, 10.1523/JNEUROSCI.1842-04.2004
Muller, 2008, High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates, Biochem. J., 409, 491, 10.1042/BJ20071162
Zoccarato, 2007, Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria, Biochem. J., 406, 125, 10.1042/BJ20070215
Treberg, 2011, Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I), J. Biol. Chem., 286, 27103, 10.1074/jbc.M111.252502
Quinlan, 2012, Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions, J. Biol. Chem., 287, 27255, 10.1074/jbc.M112.374629
Quinlan, 2011, The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle, J. Biol. Chem., 286, 31361, 10.1074/jbc.M111.267898
Perevoshchikova, 2013, Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria, Free Radic. Biol. Med., 61, 298, 10.1016/j.freeradbiomed.2013.04.006
Orr, 2012, A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase, J. Biol. Chem., 287, 42921, 10.1074/jbc.M112.397828
Starkov, 2004, Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species, J. Neurosci., 24, 7779, 10.1523/JNEUROSCI.1899-04.2004
Kowaltowski, 2009, Mitochondria and reactive oxygen species, Free Radic. Biol. Med., 47, 333, 10.1016/j.freeradbiomed.2009.05.004
Quinlan, 2014, The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I, J. Biol. Chem., 289, 8312, 10.1074/jbc.M113.545301
Andreyev, 2005, Mitochondrial metabolism of reactive oxygen species, Biochemistry (Mosc.), 70, 200, 10.1007/s10541-005-0102-7
Quinlan, 2012, Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters, Free Radic. Biol. Med., 53, 1807, 10.1016/j.freeradbiomed.2012.08.015
Quinlan, 2013, Sites of reactive oxygen species generation by mitochondria oxidizing different substrates, Redox Biol., 1, 304, 10.1016/j.redox.2013.04.005
Goncalves, 2015, Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise, J. Biol. Chem., 290, 209, 10.1074/jbc.M114.619072
Hey-Mogensen, 2014, Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria, Free Radic. Biol. Med., 72, 149, 10.1016/j.freeradbiomed.2014.04.007
Quinlan, 2013, The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production, Methods Enzymol., 526, 189, 10.1016/B978-0-12-405883-5.00012-0
Brand, 2010, The sites and topology of mitochondrial superoxide production, Exp. Gerontol., 45, 466, 10.1016/j.exger.2010.01.003
Lambert, 2004, Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I), J. Biol. Chem., 279, 39414, 10.1074/jbc.M406576200
Lambert, 2004, Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane, Biochem. J., 382, 511, 10.1042/BJ20040485
Affourtit, 2012, Measurement of proton leak and electron leak in isolated mitochondria, Methods Mol. Biol., 810, 165, 10.1007/978-1-61779-382-0_11
Bunik, 1993, Inactivation of alpha-ketoglutarate dehydrogenase during oxidative decarboxylation of alpha-ketoadipic acid, FEBS Lett., 323, 166, 10.1016/0014-5793(93)81472-C
Cha, 1968, Kinetics of enzyme reactions with competing alternative substrates, Mol. Pharmacol., 4, 621
Bunik, 1987, [Functional role of histidine residues of alpha-ketoglutarate dehydrogenase], Biokhimiia, 52, 1235
Qi, 2011, Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase, BMC Biochem., 12, 53, 10.1186/1471-2091-12-53
Parker, 1978, Inactivation of rat heart branched-chain 2-oxoacid dehydrogenase complex by adenosine triphosphate, FEBS Lett., 95, 153, 10.1016/0014-5793(78)80072-6
Mattevi, 2006, To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes, Trends Biochem. Sci., 31, 276, 10.1016/j.tibs.2006.03.003
Przyrembel, 1975, Alpha-ketoadipic aciduria, a new inborn error of lysine metabolism; biochemical studies, Clin. Chim. Acta, 58, 257, 10.1016/0009-8981(75)90445-3
Fiermonte, 2001, Identification of the human mitochondrial oxodicarboxylate carrier. Bacterial expression, reconstitution, functional characterization, tissue distribution, and chromosomal location, J. Biol. Chem., 276, 8225, 10.1074/jbc.M009607200
Lim, 2014, Dual mode action of mangiferin in mouse liver under high fat diet, Plos One, 9, e90137, 10.1371/journal.pone.0090137
Nicholls, 2013, 105
Treberg, 2010, Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production-a correction using glutathione depletion, FEBS J., 277, 2766, 10.1111/j.1742-4658.2010.07693.x