Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102:135–141. doi: 10.1016/j.biortech.2010.06.076
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi: 10.1016/j.biotechadv.2007.02.001
Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. doi: 10.1016/j.tibtech.2007.12.002
Doucha J, Lívanský K (1995) Novel outdoor thin-layer high density microalgal culture system: productivity and operation parameters. Arch Hydrobiol/Algolog Stud 76:129–147
Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826. doi: 10.1007/s10811-006-9100-4
Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117. doi: 10.1007/s10811-008-9336-2
Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. doi: 10.1007/s10811-005-8701-7
Doušková I, Doucha J, Lívanský K, Machát J, Novák P, Umysová D, Zachleder V, Vítová M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185. doi: 10.1007/s00253-008-1811-9
Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009. doi: 10.1111/j.1529-8817.2005.00128.x
Feng YJ, Li C, Zhang DW (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105. doi: 10.1016/j.biortech.2010.06.016
Henderson RJ, Sargent JR (1989) Lipid composition and biosynthesis in aging cultures of the marine cryptomonad Chroomonas salina. Phytochemistry 28:1355–1362. doi: 10.1016/S0031-9422(00)97745-8
Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995. doi: 10.1007/s12010-010-8974-4
Ho SH, Chen WM, Chang JS (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730. doi: 10.1016/j.biortech.2010.06.112
Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635. doi: 10.1016/S0141-0229(00)00266-0
Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701. doi: 10.1016/j.phytochem.2006.01.010
Kosaric N, Velikonja J (1995) Liquid and gaseous fuels from biotechnology: challenge and opportunities. FEMS Microbiol Rev 16:111–142. doi: 10.1111/j.1574-6976.1995.tb00161.x
Kvíderová J, Lukavský J (2005) The ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions. Arch Hydrobiol/Algolog Stud 118:127–140
Li XF, Xu H, Wu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771. doi: 10.1002/bit.21489
Li PL, Miao XL, Li RX, Zhong JJ (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol. doi: 10.1155/2011/141207
Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722. doi: 10.1016/j.biortech.2007.09.073
Liu J, Huang JC, Fan KW, Jiang Y, Zhong YJ, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101:8658–8663. doi: 10.1016/j.biortech.2010.05.082
Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110. doi: 10.1016/j.biortech.2010.06.017
Lukavský J (1982) Cultivation of chlorococcal algae in crossed gradients of temperature and light. Arch Hydrobiol/Algolog Stud 29:517–528
Meier RL (1955) Biological cycles in the transformation of solar energy into useful fuels. In: Daniels F, Duffie JA (eds) Solar energy research. University of Wisconsin Press, Madison, pp 179–184
Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions—I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51. doi: 10.1016/S0031-9422(02)00216-9
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441. doi: 10.1007/s00253-011-3170-1
Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42. doi: 10.1016/j.biortech.2010.06.158
Piorreck M, Baasch KH, Pohl P (1984) Biomass production, total protein, chlorophyll, lipids and fatty acids of freshwater green and blue algae under different nitrogen regimes. Phytochemistry 23:207–216. doi: 10.1016/S0031-9422(00)80304-0
Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25. doi: 10.1016/j.biortech.2010.06.035
Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P (2012) Zoosporogenesis, morphology, ultrastructure, pigment composition and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J Phycol 48:231–242 doi: 10.1111/j.1529-8817.2011.01109.x
Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259. doi: 10.1111/j.1440-1835.2006.00416.x
Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979. doi: 10.1111/j.0022-3646.1994.00972.x
Richardson B, Orcutt DM, Schwertner HA, Martinez CL, Wickline HE (1969) Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture. Appl Microbiol 18:245–250
Rodolfi L, Chini Zitelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. doi: 10.1002/bit.22033
Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399. doi: 10.1111/j.0022-3646.1990.00393.x
Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae, close out report TP-580-24190. National Renewable Energy Laboratory, Golden
Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684. doi: 10.1007/s12010-009-8659-z
Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384. doi: 10.1111/j.0022-3646.1981.00374.x
Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia JL, Chisti Y (2011) Photoautotrophic production of lipids by some Chlorella strains. Mar Biotechnol 13:928–941. doi: 10.1007/s10126-010-9355-2
Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149. doi: 10.1104/pp.24.1.120
Stauffer E (2005) A review of the analysis of vegetable oil residues from fire debris samples: spontaneous ignition, vegetable oils, and the forensic approach. J Forensic Sci 50:1–10. doi: 10.1111/j.1556-4029.2006.00220.x
Tang HY, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO (2011) Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108:2280–2287. doi: 10.1002/bit.23160
Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844. doi: 10.1007/s00253-011-3399-8
Wood BJB (1988) Lipids of algae and protozoa. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 807–867
Wright L (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based projects. Biomass Bioenerg 30:706–714. doi: 10.1016/j.biombioe.2005.08.008
Xiong W, Li XF, Xiang JY, Wu QY (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36. doi: 10.1007/s00253-007-1285-1
Zachleder V, Šetlík I (1982) Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plantarum 24:341–353. doi: 10.1007/BF02909100