Sản xuất isoquercitrin từ quercetin bằng chuyển hóa sinh học sử dụng vi khuẩn Bacillus sp. CSQ10 được phân lập từ đất trồng Camellia sinensis

Applied Biological Chemistry - Tập 65 Số 1 - 2022
Jieun Kang1, Won-Jung Park1, Yong-Han Yoon2, Bong-Gyu Kim1
1Division of Environmental and Forest Science, Gyeongsang National University, Jinju, 52725, Republic of Korea
2Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea

Tóm tắt

Tóm tắt

Vi sinh vật được sử dụng rộng rãi để sản xuất các chất sinh học do khả năng đa dạng của chúng trong việc chuyển hóa các hợp chất rẻ tiền thành các hợp chất hoạt động sinh lý. Trong nghiên cứu này, chúng tôi đã phân lập một vi sinh vật có khả năng chuyển hóa quercetin thành isoquercitrin, một chất có nhiều chức năng sinh học, từ đất trồng trà. Một chủng vi khuẩn Bacillus đã được phân lập và xác định là Bacillus sp. CSQ 10 bằng cách phân tích gene 16sRNA. Khi quercetin được đưa vào làm chất nền cho Bacillus sp. CSQ10, isoquercitrin đã được sản xuất thông qua chuyển hóa sinh học. Hơn nữa, Bacillus sp. CSQ10 có khả năng chuyển hóa sinh học từ isoquercitrin thành quercetin-3-O-(6″-O-acetyl)-β-d-glucoside khi môi trường chuyển hóa sinh học được thay thế bằng môi trường lên men-Y-Pea. Dựa trên các phát hiện này, hiệu suất chuyển hóa sinh học của Bacillus sp. CSQ10 đã được xác minh bằng cách tối ưu hóa các điều kiện thực nghiệm cho hệ thống nuôi cấy ở quy mô phòng thí nghiệm về nhiệt độ, mật độ tế bào, môi trường chuyển hóa sinh học, và nồng độ chất nền. Kết quả là sản lượng chuyển hóa sinh học tốt nhất đạt được ở nhiệt độ 37 °C, mật độ tế bào 6.0 OD600, với môi trường YPD và cung cấp 181.0 mg/L quercetin. Kết luận là, 193.3 mg/L và 198.8 mg/L của isoquercitrin và quercetin-3-O-(6″-O-acetyl)-β-d-glucoside, tương ứng, đã được sản xuất bởi Bacillus sp. CSQ 10 dưới các điều kiện thực nghiệm được tối ưu hóa này.

Từ khóa

#Chuyển hóa sinh học #Bacillus sp. #isoquercitrin #quercetin #vi sinh vật #đất trồng trà #sinh lý học #gene 16sRNA #tối ưu hóa điều kiện #môi trường lên men #vi khuẩn #tế bào #acetyl glucoside

Tài liệu tham khảo

Robertson AD, Paustian K, Ogle S, Wallenstein MD, Lugato E, Cotrufo MF (2019) Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeosciences 16:1225–1248

Bouarab-Chibane L, Forquet V, Lanteri P, Clement Y, Leonard-Akkari L, Oulahal N, Degraeve P, Bordes C (2019) Antibacterial properties of polyphenols: characterization and QSAR (Quantitative Structure-Activity Relationship) models. Front Microbiol 10:829

Zabel S, Brandt W, Porzel A, Athmer B, Bennewitz S, Schäfer P, Kortbeek R, Bleeker P, Tissier A (2021) A single cytochrome P450 oxidase from Solanum habrochaites sequentially oxidizes 7-epi-zingiberene to derivatives toxic to whiteflies and various microorganisms. Plant J 105:1309–1325

Mano ECC, Scott AL, Honorio KM (2018) UDP-glucuronosyltransferases: structure, function and drug design studies. Curr Med Chem 25:3247–3255

ShylajaNaciyar M, Karthick L, Prakasam PA, Deviram G, Uma L, Prabaharan D, Saha SK (2020) Diversity of glutathione S-transferases (GSTs) in Cyanobacteria with reference to their structures, substrate recognition and catalytic functions. Microorganisms 8:712

Darsandhari S, Dhakal D, Shrestha B, Parajuli P, Seo JH, Kim TS, Sohng JK (2018) Characterization of regioselective flavonoid O-methyltransferase from the Streptomyces sp. KCTC 0041BP. Enzyme Microb Technol 113:29–36

Gallego A, Fortunato MS, Foglia J, Rossi S, Gemini B, Gomez L, Gomez CE, Higa LE, Koro SE (2003) Biodegradation and detoxification of phenolic compounds by pure and mixed indigenous cultures in aerobic reactors. Int Biodeterior Biodegradation 52:261–267

Snoeck S, Pavlidi N, Pipini D, Vontas J, Dermauw W, Van LT (2019) Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae. Insect Biochem Mo Biol 109:116–127

Yang B, Liu H, Yang J, Kumar V, Jiang Y (2018) New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Technol 79:116–124

He B, Bai X, Tan Y, Xie W, Feng Y, Yang GY (2022) Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synth Syst Biotechnol 7:602–620

Yang C, Li F, Zhang X, Wang L, Zhou Z, Wang M (2013) Phenolic antioxidants from Rosa soulieana flowers. Nat Prod Res 27:2055–2058

Dai X, Huang Q, Zhou B, Gong Z, Liu Z, Shi S (2013) Preparative isolation and purification of seven main antioxidants from Eucommia ulmoides Oliv. (Duzhong) leaves using HSCCC guided by DPPH-HPLC experiment. Food Chem 139:563–570

Jurˇikova T, Sochor J, Rop O, Mlcek J, Balla S, Szekeres L, Adam V, Kizek R (2012) Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits. Molecules 17:14490–14509

Belkhir M, Rebai O, Dhaouadi K, Congiu F, Tuberoso CI, Amri M, Fattouch S (2013) Comparative analysis of tunisian wild Crataegus azarolus (yellow azarole) and Crataegus monogyna (red azarole) leaf, fruit, and traditionally derived syrup: phenolic profiles and antioxidant and antimicrobial activities of the aqueous-acetone extracts. J Agric Food Chem 61:9594–9601

Males Z, Saric D, Bojic M (2013) Quantitative determination of flavonoids and chlorogenic acid in the leaves of Arbutus unedo L using thin layer chromatography. J Anal Methods Chem 18:4057

Vlase L, Parvu M, Parvu EA, Toiu A (2013) Phytochemical analysis of Allium fistulosum L. and A. ursinum L. Dig J Nanomater Bios 8:457–467

Vlase L, Parvu M, Parvu EA, Toiu A (2013) Chemical constituents of three Allium species from Romania. Molecules 18:114–127

Kraujalis P, Venskutonis PR, Kraujaliene V, Pukalskas A (2013) Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods Hum Nutr 68:322–328

Pennesi CM, Neely J, Marks AG Jr, Basak SA (2017) Use of isoquercetin in the treatment of prurigo nodularis. J Drugs Dermatol 11:1156–1158

Baell J, Walters MA (2014) Chemistry: Chemical con artists foil drug discovery. Nature 513(7519):481–483

Lu Z, Wang J, Lin S, Zhan Y (2013) Degradation of rutin into isoquercitrin by Bacillus litoralis strain C44. IOSR J Engin 2:1154–1161

Hasumura M, Yasuhara K, Tamura T, Imai T, Mitsumori K, Hirose M (2004) Evaluation of the toxicity of enzymatically decomposed rutin with 13-weeks dietary administration to wistar rats. Food Chem Toxicol 42:439–444

Hao Y, Wei Z, Wang Z, Li G, Yao Y, Dun B (2021) Biotransformation of flavonoids improves antimicrobial and anti-breast cancer activities in vitro. Foods 10:2367

Kim BG (2019) Biosynthesis of bioactive isokaemferide from naringenin in Escherichia coli. J Appl Biol Chem 62:1–6

Kim BG (2019) Optimization of bioactive isorhamnetin 3-O-glucoside production in Escherichia coli. J Appl Biol Chem 62:361–366

Venisety RK, Ciddi V (2003) Application of microbial biotransformation for the new drug discovery using natural drugs as substrates. Curr Pharm Biotechnol 4:153–167

Tong WY, Dong X (2009) Microbial biotransformation: recent developments on steroid drugs. Recent Pat Biotechnol 3:141–153

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

Lee CK, Jang MY, Park HR, Choo GC, Cho HS, Park SB, Oh KC, An JB, Kim BG (2016) Cloning and characterization of xylanase in cellulolytic Bacillus sp. strain JMY1 isolated from forest soil. Appl Biol Chem 59:415–423

Yang JK, Zhang JJ, Yu HY, Cheng JW, Miao LH (2014) Community composition and cellulase activity of cellulolytic bacteria from forest soils planted broad-leaved deciduous and evergreen trees. Appl Microbiol Biotechnol 98:1449–1458

Kim JH, Kim BG, Park Y, Ko JH, Lim CE, Lim J, Lim Y, Ahn JH (2007) Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Biosci Biotechnol Biochem 70:1471–1477

Ablajan K, Abliz Z, Shang XY, He JM, Zhang RP, Shi JG (2006) Structural characterization of flavonol 3,7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J Mass Spectrom 41(3):352–360

Douglass CD, Wender HWL, SH, (1949) The isolation of isoquercitrin from the seed pods of Cercis canadensis. J Am Chem Soc 71:2658–2659

Olennikov DN, Tankhaeva LM, Partilkhaev VV (2013) Chemical investigation of Caragana arborescens shoots. Nat Prod Commun 8:585–586

Fabani MP, Luna L, Baroni MV, Monferran MV, Ighani M, Tapia A, Wunderlin DA, Feresin GE (2013) Pistachio (Pistacia vera var Kerman) from Argentinean cultivars. A natural product with potential to improve human health. J Funct Foods 5:1347–1356

Paulke A, Schubert-Zsilavecz M, Wurglics M (2006) Determination of St John’s wort flavonoid-metabolites in rat brain through high performance liquid chromatography coupled with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 832:109113

Kim M, Im S, Cho YK, Choi C, Son Y, Kwon D, Jung YS, Lee YH (2020) Anti-obesity effects of soybean embryo extract and enzymatically-modified isoquercitrin. Biomolecules 10(10):1394

Ansari P, Flatt PR, Harriott P, Abdel-Wahab YHA (2020) Anti-hyperglycaemic and insulin releasing effects of Camellia sinensis leaves and isolation and characterization of active compounds. Br J Nutr 17:1–35

Zhang Y, Peng L, Li W, Dai T, Nie L, Xie J, Ai Y, Li L, Tian Y, Sheng J (2020) Polyphenol extract of Moringa oleifera leaves alleviates colonic inflammation in dextran sulfate sodium-treated mice. Evid Based Complement Alternat Med 2020:6295402

Won YS, Kim JH, Lizardo RCM, Min HJ, Cho HD, Hong SM, Seo KI (2020) The flavonol isoquercitrin promotes mitochondrial-dependent apoptosis in SK-Mel-2 melanoma cell via the PI3K/AKT/mTOR Pathway. Nutrients 12(12):3683

Shui L, Wang W, Xie M, Ye B, Li X, Liu Y, Zheng M (2020) Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway. Aging (Albany NY) 12(23):24318–24332

Jones JA, Vernacchio VR, Lachance DM (2015) ePathOptimize: A combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep 5:11301

Jeon YH, Seo JE, Kim JH, Choi SW (2021) Quantitative changes of flavonol glycosides from Pine needles by cultivar, harvest season, and thermal process. Prev Nutr Food Sci 26:100–108

Matsuura H, Amano M, Kawabata J, Mizutani J (2002) Isolation and measurement of quercetin glucosides in flower buds of Japanese butterbur (Petasites japonicus subsp. gigantea Kitam.). Biosci Biotechnol Biochem 66:1571–1575

Kim KM, Im AR, Lee S, Chae S (2017) Dual protective effects of flavonoids from Petasites japonicus against UVB-induced apoptosis mediated via HSF-1 activated heat shock proteins and Nrf2-activated heme oxygenase-1 pathways. Biol Pharm Bull 40:765–773

Lee DG, Lee KH, Park KW, Han CK, Ryu BY, Cho EJ, Lee S (2015) Isolation and identification of flavonoids with aldose reductase inhibitory activity from Petasites japonicus. Asian J Chem 27:991–994

Wang JM, Ma YL, Wu XY, Yu L, Xia R, Sun GX, Wu FA (2012) Selective hydrolysis by commercially available hesperidinase for isoquercitrin production. J Mol Catal B: Enzym 81:37–42