Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment

In Vitro Cellular & Developmental Biology - Plant - Tập 38 - Trang 316-324 - 2002
Anju Gulati1, Pat Schryer2, Alan McHughen3
1Department of Biological Sciences, University of Calgary, Calgary, Canada
2Crop Development Centre, University of Saskatchewan, Saskatoon, Canada
3Department of Botany and Plant Sciences, College of Natural and Agricultural Sciences, University of California, Riverside

Tóm tắt

A reproducible system for gene transfer in lentil through particle bombardment is presented. Lentil cotyledonary nodes excised from germinated seedlings were bombarded with a plasmid containing a mutant acetolactate synthase gene (ALS) from tobacco conferring resistance to sulfonylurea herbicides. Putative transgenic shoots regenerated on Murashige and Skoog medium supplemented with 6-benzylaminopurine (BA) and chlorsulfuron (5 nM for first 4 wk followed by 2.5 nM for the remainder of the culture period) were micrografted and successfully transferred to soil. T0 and selfed progeny plants were screened using metsulfuron herbicide leaflet painting. The non-transformed escapes died and transformed plants survived the test. The surviving plants were phenotypically normal and produced viable seeds. The presence and stable transmission of the transgene into genomic DNA of screened T1 transformants was confirmed by PCR and Southern hybridization. This method for producing transformed plants will allow new opportunities for lentil breeding to produce improved cultivars.

Tài liệu tham khảo

Ahmad, M.; Fautrier, A. G.; McNeil, D. L.; Hill, G. D.; Burritt, D. J. In vitro propagation of Lens species and their F1 interspecific hybrids. Plant Cell Tiss. Organ Cult. 47:169–176; 1997. Aragão, F. J. L.; Barros, L. M.; Brasileiro, A. C. M.; Ribeiro, S. G.; Smith, F. D.; Sanford, J. C.; Rech, E. L. Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor. Appl. Genet. 93:142–150; 1996. Aragão, F. J. L.; Sarokin, L.; Vianna, G. R.; Rech, E. L. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101:1–6; 2000. Bajaj, Y. P. S.; Dhanju, M. S. Regeneration of plants from apical meristem tips of some legumes. Curr. Sci. 48:906–907; 1979. Bean, S. J.; Gooding, P. S.; Mullineaux, P. M.; Davies, D. R. A simple system for pea transformation. Plant Cell Rep. 16:513–519; 1997. Brar, G. S.; Cohen, B. A.; Vick, C. L.; Johnson, G. W. Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology. Plant J. 5:745–753; 1994. Chowrira, G. M.; Akella, V.; Fuerst, P. E.; Lurquin, P. F. Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol. Biotechnol. 5:85–96; 1996. Christou, P. Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann. Bot. 66:379–386; 1990. Christou, P. Biotechnology applied to grain legumes. Field Crops Res. 53:83–97; 1997. Christou, P.; McCabe, D. E. Prediction of germ-line transformation events in chimaeric R0 transgenic soybean plantlets using tissue specific expression patterns. Plant J. 2:283–290; 1992. Christou, P.; Swain, W. F.; Yang, N. S.; McCabe, D. E. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl Acad. Sci. USA 86:7500–7504; 1989. Erskine, W. Evaluation and utilization of lentil germplasm in an international breeding program. In: Witcombe, J. R.; Erskine, W., eds Genetic resources and their exploitation—chickpeas, faba beans and lentils. The Hague: Martinus Nijhoff; 1984:225–237. Gulati, A.; Jaiwal, P. K. Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Rep. 13:523–527; 1994. Gulati, A.; Schryer, P.; McHughen, A. Regeneration and Micrografting of lentil shoots. In Vitro Cell. Dev. Biol. Plant 37:798–802; 2001. Kar, S.; Basu, D.; Das, S.; Ramkrishnan, N. A.; Mukherjee, P.; Nayak, P.; Sen, S. K. Expression of cry1A(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res. 6:177–185; 1997. Klein, T. M.; Wolf, E. D.; Wu, R.; Sanford, J. C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73; 1987. Lee, K. Y.; Townsend, J.; Tepperman, J.; Black, M.; Chui, C. F.; Mazur, B.; Dunsmuir, P.; Bedbrook, J. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7:1241–1248; 1988. Lurquin, P. F.; Cai, Z.; Stiff, C. M.; Fuerst, E. P. Half embryo cocultivation technique for estimating the susceptibility of pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars to Agrobacterium tumefaciens. Mol. Biotechnol. 9:175–179; 1998. Maccarrone, M.; Dini, L.; Di Marzio, L.; Di Giulio, A.; Rossi, A.; Finazzi Agrò, A. Interaction of DNA with cationic liposomes: ability of transfecting lentil protoplasts. Biochem. Biophys. Res. Commun. 186:1417–1422; 1992. Maccarrone, M.; Veldink, G. A.; Finazzi Agrò, A.; Vilegenthart, J. F. G. Lentil root protoplasts: a transient expression system suitable for coelectroporation of monoclonal antibodies and plasmid molecules. Biochim. Biophys. Acta 1243:136–142; 1995. Malik, K. A.; Saxena, P. K. Thiadiazuron induces high frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust. J. Plant Physiol. 19:731–740; 1992. McCown, B. H.; McCabe, D. E.; Russell, D. E.; Robinson, D. R.; Barton, K. A.; Raffa, K. F. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep. 9:590–594; 1991. Morrish, F.; Songstad, D. D.; Armstrong, C. L.; Fromm, M. Microprojectile bombardment: a method for the production of transgenic cereal crop plants and the functional analysis of genes. In: Hiatt, A., ed. Transgenic plants fundamentals and applications. New York: Marcell Dekker, Inc.; 1993:133–171. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962. Murthy, B. N. S.; Victor, J.; Singh, R. P.; Fletcher, R. A.; Saxena, P. K. In vitro regeneration of chickpea (Cicer arietinum L.): stimulation of direct organogensis and somatic embryogensis by thidiazuron. J. Plant Growth Regul. 19:233–240; 1996. Polanco, M. C.; Peláez, M. I.; Ruiz, M. L. Factors affecting callus and shoot formation in in vitro cultures of Lens culinaris Medik. Plant Cell Tiss. Organ Cult. 15:175–182; 1988. Polisetty, R.; Paul, V.; Deveshwar, J.J.; Khetarpal, S.; Suresh, K.; Chandra, R. Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietineum L.). Plant Cell Rep. 16:565–571; 1997. Rajasekaran, R.; Hudspeth, R. L.; Cary, J. W.; Anderson, D. M.; Cleveland, T. E. High frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cells suspension cultures. Plant Cell Rep. 19:539–545; 2000. Russell, D. R.; Wallace, K.; Bathe, J.; Martinell, B.; McCabe, D. Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep. 12:165–169; 1993. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989. Santarem, E. R.; Finer, J. J. Transformation of soybean [Glycine max (L.) Merrill] using proliferative embryogenic tissue maintained on semisolid medium. In Vitro Cell Dev. Biol. Plant 35:451–455; 1999. Saskatchewan Pulse Growers. Pulse production manual; lentil, 2nd edn. Saskatoon, SK: Saskatchewan Pulse Growers; 2000:7.3–7.31. Singh, R. K.; Raghuvanshi, S. S. Plantlet regeneration from nodal segment and shoot tip derived explants of lentil. Lens Newslett. 6:33–35; 1989. Warkentin, T. D. Potential for the genetic transformation of lentil (Lens culinaris Medik.) with Agrobacterium tumefaciens. Ph.D. thesis, University of Saskatchewan, Saskatoon, SK.; 1992; 150 pp. Warkentin, T. D.; McHughen, A. Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens. Plant Cell Rep. 10:489–493; 1991. Warkentin, T. D.; McHughen, A. Agrobacterium tumefaciens-mediated beta-glucuronidase (GUS) gene expression in lentil (Lens culinaris Medik.) tissues. Plant Cell Rep. 11:274–278; 1992. Warkentin, T. D.; McHughen, A. Regeneration from lentil cotyledonary nodes and potential of this explant for transformation by Agrobacterium tumefaciens. Lens Newslett. 20:26–28; 1993. Wijayanto, T.; McHughen, A. Genetic transformation of Linum by particle bombardment. In Vitro Cell. Dev. Biol. Plant 35:456–465; 1999. Williams, J. D.; McHughen, A. Plant regeneration of the legume Lens culinaris Medik. in vitro. Plant Cell Tiss. Organ Cult. 7:149–153; 1986. Wright, M. S.; Koehler, S. M.; Hinchee, M. A.; Carnes, M. G. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 5:150–154; 1986. Yang, J.; Lee, H. J.; Shin, D. H.; Oh, S. K.; Seon, J. H.; Paek, K. Y.; Han, K. H. Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep. 18:978–984; 1999.