Production of cellulose nanofibrils: A review of recent advances

Industrial Crops and Products - Tập 93 - Trang 2-25 - 2016
Oleksandr Nechyporchuk1, Mohamed Naceur Belgacem1, Julien Bras1
1Université Grenoble Alpes, Laboratory of Pulp and Paper Science and Graphic Arts (LGP2), CNRS, Agefpi, F-38000 Grenoble, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abe, 2011, Formation of hydrogels from cellulose nanofibers, Carbohydr. Polym., 85, 733, 10.1016/j.carbpol.2011.03.028

Abe, 2012, Cellulose nanofiber-based hydrogels with high mechanical strength, Cellulose, 19, 1907, 10.1007/s10570-012-9784-3

Abbott, 2006, Cationic functionalisation of cellulose using a choline based ionic liquid analogue, Green Chem., 8, 784, 10.1039/b605258d

Alemdar, 2008, Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls, Bioresour. Technol., 99, 1664, 10.1016/j.biortech.2007.04.029

Aulin, 2009, Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water, Langmuir, 25, 7675, 10.1021/la900323n

Aulin, 2010, Self-organized films from cellulose I nanofibrils using the layer-by-layer technique, Biomacromolecules, 11, 872, 10.1021/bm100075e

Aulin, 2010, Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter, 6, 3298, 10.1039/c001939a

Aulin, 2010, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose, 17, 559, 10.1007/s10570-009-9393-y

Aulin, 2012, High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability, Nanoscale, 4, 6622, 10.1039/c2nr31726e

Bäckström, 2012, Effect of ionic form on fibrillation and the development of the fibre network strength during the refining of the kraft pulps, O Papel: Revista Mensal de Tecnologia em Celulose e, 73, 57

Bardet, 2013, Different strategies for obtaining high opacity films of MFC with TiO2 pigments, Cellulose, 20, 3025, 10.1007/s10570-013-0025-1

Bardet, 2014, Cellulose nanofibers and their use in paper industry, 207

Beneventi, 2014, Highly porous paper loading with microfibrillated cellulose by spray coating on wet substrates, Ind. Eng. Chem. Res., 53, 10982, 10.1021/ie500955x

Benhamou, 2014, Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time, Carbohydr. Polym., 99, 74, 10.1016/j.carbpol.2013.08.032

Berlin, 2006, Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations, J. Biotechnol., 125, 198, 10.1016/j.jbiotec.2006.02.021

Besbes, 2011, Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential, Carbohydr. Polym., 86, 1198, 10.1016/j.carbpol.2011.06.015

Bhatnagar, 2005, Processing of cellulose nanofiber-reinforced composites, J. Reinf. Plast. Compos., 24, 1259, 10.1177/0731684405049864

Bolaski, W., Gallatin, A., Gallatin, J.C., 1962. Enzymatic conversion of cellulosic fibers. Patent U.S. 3041246.

Brown, 2007, Bioengineering bacterial cellulose/poly (ethylene oxide) nanocomposites, Biomacromolecules, 8, 3074, 10.1021/bm700448x

Bulota, 2012, Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid), J. Appl. Polym. Sci., 126, E449, 10.1002/app.36787

Butchosa, 2014, Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose, Cellulose, 21, 4349, 10.1007/s10570-014-0452-7

Cai, 2003, Effect of surface‐grafted ionic groups on the performance of cellulose–fiber–reinforced thermoplastic composites, J. Polym. Sci. B: Polym. Phys., 41, 2022, 10.1002/polb.10566

Carrasco, 1996, Refining of bleached cellulosic pulps: characterization by application of the colloidal titration technique, Wood Sci. Technol., 30, 227, 10.1007/BF00229345

Carrillo, 2014, Microemulsion systems for fiber deconstruction into cellulose nanofibrils, ACS Appl. Mater. Interfaces, 6, 22622, 10.1021/am5067332

Chaker, 2013, Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps, Cellulose, 20, 2863, 10.1007/s10570-013-0036-y

Chaker, 2015, Cationic nanofibrillar cellulose with high antibacterial properties, Carbohydr. Polym., 131, 224, 10.1016/j.carbpol.2015.06.003

Charreau, 2013, Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose, Recent Pat. Nanotechnol., 7, 56, 10.2174/187221013804484854

Chauve, 2014, Industrial point of view of nanocellulose materials and their possible applications, 233

Chen, 2011, Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments, Carbohydr. Polym., 83, 1804, 10.1016/j.carbpol.2010.10.040

Chen, 2011, Ultralight and highly flexible aerogels with long cellulose I nanofibers, Soft Matter, 7, 10360, 10.1039/c1sm06179h

Cheng, 2009, Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication, Compos. A: Appl. Sci. Manuf., 40, 218, 10.1016/j.compositesa.2008.11.009

Cherian, 2010, Isolation of nanocellulose from pineapple leaf fibres by steam explosion, Carbohydr. Polym., 81, 720, 10.1016/j.carbpol.2010.03.046

Chinga-Carrasco, 2011, Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view, Nanoscale Res. Lett., 6, 417, 10.1186/1556-276X-6-417

Chinga-Carrasco, 2013, Optical methods for the quantification of the fibrillation degree of bleached MFC materials, Micron, 48, 42, 10.1016/j.micron.2013.02.005

Chinga-Carrasco, 2014, The effect of residual fibres on the micro-topography of cellulose nanopaper, Micron, 56, 80, 10.1016/j.micron.2013.09.002

Cobut, 2014, Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix, BioResources, 9, 3276, 10.15376/biores.9.2.3276-3289

Coseri, 2013, Oxidized cellulose—survey of the most recent achievements, Carbohydr. Polym., 93, 207, 10.1016/j.carbpol.2012.03.086

Davis, 1993, Selective oxidation of monosaccharide derivatives to uronic acids, Tetrahedron Lett., 34, 1181, 10.1016/S0040-4039(00)77522-8

De Campos, 2013, Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication, Cellulose, 20, 1491, 10.1007/s10570-013-9909-3

De Nooy, 1994, Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides, Recueil des Travaux Chimiques des Pays Bas, 113, 165, 10.1002/recl.19941130307

Deepa, 2011, Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion, Bioresour. Technol., 102, 1988, 10.1016/j.biortech.2010.09.030

Diniz, 2004, Hornification—its origin and interpretation in wood pulps, Wood Sci. Technol., 37, 489, 10.1007/s00226-003-0216-2

Dong, 2013, Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles, Carbohydr. Polym., 95, 760, 10.1016/j.carbpol.2013.03.041

Dong, 2013, Cation-induced hydrogels of cellulose nanofibrils with tunable moduli, Biomacromolecules, 14, 3338, 10.1021/bm400993f

Doshi, 1993, Electrospinning process and applications of electrospun fibers, Industry Applications Society Annual Meeting Conference Record of the 1993 IEEE, 1698, 10.1109/IAS.1993.299067

Dufresne, 1997, Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils, J. Appl. Polym. Sci., 64, 1185, 10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V

Dufresne, 2000, Cellulose microfibrils from potato tuber cells: Processing and characterization of starch–cellulose microfibril composites, J. Appl. Polym. Sci., 76, 2080, 10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U

Eriksen, 2008, The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper, Nordic Pulp Pap. Res. J., 23, 299, 10.3183/NPPRJ-2008-23-03-p299-304

Eyholzer, 2010, Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form, Cellulose, 17, 19, 10.1007/s10570-009-9372-3

Eyholzer, 2011, Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus, Biomacromolecules, 12, 1419, 10.1021/bm101131b

Fengel, 1983

Fernandes, 2011, Nanostructure of cellulose microfibrils in spruce wood, Proc. Natl. Acad. Sci. U. S. A., 108, E1195, 10.1073/pnas.1108942108

Fernandez-Bolanos, 2001, Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose, Bioresour. Technol., 79, 53, 10.1016/S0960-8524(01)00015-3

Frey, 2008, Electrospinning cellulose and cellulose derivatives, Polym. Rev., 48, 378, 10.1080/15583720802022281

Frey-Wyssling, 1963, Die elementarfibrillen der cellulose, Makromol. Chem., 62, 25, 10.1002/macp.1963.020620103

Fortunato, 2012, Reinforcement of polymeric submicrometer‐sized fibers by microfibrillated cellulose, Macromol. Mater. Eng., 297, 576, 10.1002/mame.201100408

Fumagalli, 2013, Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels, Biomacromolecules, 14, 3246, 10.1021/bm400864z

Gane, P.A.C, Schoelkopf, J., Gantenbein, D., Schenker, M., Pohl, M., Kuebler, B., 2010. Process for the Production of Nano-Fibrillar Cellulose Suspensions. WO2010112519 (A1).

Gatenholm, 2010, Bacterial nanocellulose as a renewable material for biomedical applications, MRS Bull., 35, 208, 10.1557/mrs2010.653

Ghorani, 2013, Controlled morphology and mechanical characterisation of electrospun cellulose acetate fibre webs, Int. J. Polym. Sci., 2013, e256161, 10.1155/2013/256161

Haapala, 2013, Optical characterisation of size, shape and fibrillarity from microfibrillar and microcrystalline cellulose: and fine ground wood powder fractions, Appita J., 66, 331

Hamada, 2012, The effects of nano-fibrillated cellulose as a coating agent for screen printing, 12th TAPPI Advanced Coating Fundamentals Symposium

Hassan, 2011, Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites, J. Mater. Sci., 46, 1732, 10.1007/s10853-010-4992-4

Heinze, 2005, Carboxymethyl ethers of cellulose and starch—a review, vol. 223, 13

Henriksson, 2007, Structure and properties of cellulose nanocomposite films containing melamine formaldehyde, J. Appl. Polym. Sci., 106, 2817, 10.1002/app.26946

Henriksson, 2008, Cellulose nanopaper structures of high toughness, Biomacromolecules, 9, 1579, 10.1021/bm800038n

Henriksson, 2007, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, Eur. Polym. J., 43, 3434, 10.1016/j.eurpolymj.2007.05.038

Herrick, F.W., Casebier, R.L., Hamilton, J.K., Sandberg, K.R., 1983. Microfibrillated cellulose: morphology, and accessibility. In: Sarko, A. (Ed.), Proceedings of the Ninth Cellulose Conference. Applied Polymer Symposia, vol. 37. Wiley, N.Y., pp. 797–813.

Hietala, 2014, Extrusion processing of green biocomposites: compounding, fibrillation efficiency, and fiber dispersion, J. Appl. Polym. Sci., 131, 1, 10.1002/app.39981

Ho, 2011, Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes, Cellulose, 18, 1391, 10.1007/s10570-011-9591-2

Ho, 2015, Nanofibrillation of pulp fibers by twin-screw extrusion, Cellulose, 22, 421, 10.1007/s10570-014-0518-6

Hoeger, 2013, Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification, Cellulose, 20, 807, 10.1007/s10570-013-9867-9

Hsieh, 2013, Electrically conductive lines on cellulose nanopaper for flexible electrical devices, Nanoscale, 5, 9289, 10.1039/c3nr01951a

Huang, 2013, Highly transparent and flexible nanopaper transistors, ACS Nano, 7, 2106, 10.1021/nn304407r

Hubbe, 2008, Cellulosic nanocomposites: a review, BioResources, 3, 929, 10.15376/biores.3.3.929-980

Husband, J.C., Svending, P., Skuse, D.R., Motsi, T., Likitalo, M., Coles, A., 2010. Paper Filler Composition. WO2010131016 (A2).

Isogai, 2013, Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, J. Wood Sci., 59, 449, 10.1007/s10086-013-1365-z

Isogai, 2011, TEMPO-oxidized cellulose nanofibers, Nanoscale, 3, 71, 10.1039/C0NR00583E

Iwamoto, 2007, Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Appl. Phys. A, 89, 461, 10.1007/s00339-007-4175-6

Iwamoto, 2005, Optically transparent composites reinforced with plant fiber-based nanofibers, Appl. Phys. A, 81, 1109, 10.1007/s00339-005-3316-z

Janardhnan, 2007, Isolation of cellulose microfibrils— an enzymatic approach, BioResources, 1, 176, 10.15376/biores.1.2.176-188

Jayant, 2011, Production of cellulase by different co-culture of Aspergillus niger and Penicillium chrysogenum from waste paper, cotton waste and baggase, J. Yeast Fungal Res., 2, 24

Jiang, 2013, Chemically and mechanically isolated nanocellulose and their self-assembled structures, Carbohydr. Polym., 95, 32, 10.1016/j.carbpol.2013.02.022

Johnson, 2008, A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix, Cellulose, 16, 227, 10.1007/s10570-008-9269-6

Joseleau, 2012, Interaction between microfibrillar cellulose fines and fibers: influence on pulp qualities and paper sheet properties, Cellulose, 19, 769, 10.1007/s10570-012-9693-5

Jonoobi, 2012, Producing low-cost cellulose nanofiber from sludge as new source of raw materials, Ind. Crops Prod., 40, 232, 10.1016/j.indcrop.2012.03.018

Kaboorani, 2013, Ultrasonication technique: a method for dispersing nanoclay in wood adhesives, J. Nanomater., 2013, e341897, 10.1155/2013/341897

Kalia, 2014, Nanofibrillated cellulose: surface modification and potential applications, Colloid Polym. Sci., 292, 5, 10.1007/s00396-013-3112-9

Karande, 2011, Nanofibrillation of cotton fibers by disc refiner and its characterization, Fibers Polym., 12, 399, 10.1007/s12221-011-0399-3

Karppinen, 2012, Flocculation of microfibrillated cellulose in shear flow, Cellulose, 19, 1807, 10.1007/s10570-012-9766-5

Kaushik, 2011, Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization, Carbohydr. Res., 346, 76, 10.1016/j.carres.2010.10.020

Kekäläinen, K., Liimatainen, H., Biale, F., Niinimäki, J., 2015. Nanofibrillation of TEMPO-oxidized bleached hardwood kraft cellulose at high solids content. http://doi.org/10.1515/hf-2014-0269.

Kim, 2001, Ion-exchange chromatography by dicarboxyl cellulose gel, J. Chromatogr. A, 919, 29, 10.1016/S0021-9673(01)00800-7

Klemm, 2005, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358, 10.1002/anie.200460587

Klemm, 1998, vol. 2

Klemm, 1998, vol. 1

Klemm, D., Schmauder, H.-P., Heinze, T., 2004. Cellulose. In: de Baets, S., Vandamme, E., Steinbüchel, A. (Eds.), Biopolymers, vol. 6. Polysaccharides II: Polysaccharides from Eukaryotes. Wiley-VCH Weinheim, pp. 275–319.

Kondo, 2014, Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers, Carbohydr. Polym., 112, 284, 10.1016/j.carbpol.2014.05.064

Konwarh, 2013, Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications, Biotechnol. Adv., 31, 421, 10.1016/j.biotechadv.2013.01.002

Kose, 2011, Nanocellulose as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision, Biomacromolecules, 12, 716, 10.1021/bm1013469

Laitinen, 2011, Fractionation of pulp and paper particles selectively by size, BioResources, 6, 672, 10.15376/biores.6.1.672-685

Larsson, 2014, Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils, Cellulose, 21, 323, 10.1007/s10570-013-0099-9

Lavoine, 2012, Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review, Carbohydr. Polym., 90, 735, 10.1016/j.carbpol.2012.05.026

Lasseuguette, 2008, Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp, Cellulose, 15, 425, 10.1007/s10570-007-9184-2

Liimatainen, 2013, High-strength nanocellulose-talc hybrid barrier films, ACS Appl. Mater. Interfaces, 5, 13412, 10.1021/am4043273

Liimatainen, 2013, Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment, Cellulose, 20, 741, 10.1007/s10570-013-9865-y

Liimatainen, 2012, Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation, Biomacromolecules, 13, 1592, 10.1021/bm300319m

Liimatainen, 2014, Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation, Carbohydr. Polym., 103, 187, 10.1016/j.carbpol.2013.12.042

Lim, 2010, Preparation of cellulose-based nanofibers using electrospinning

Lindström, 2011, Nanocellulose research and developments at innventia

Lindström, 2014, Market and technical challenges and opportunities in the area of innovative new materials and composites based on nanocellulosics, Scand. J. For. Res., 29, 345, 10.1080/02827581.2014.928365

Lindström, 2014, Microfibrillated cellulose

Lynd, 2002, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol. Mol. Biol. Rev., 66, 506, 10.1128/MMBR.66.3.506-577.2002

Madani, 2011, Fractionation of microfibrillated cellulose and its effects on tensile index and elongation of paper, Nordic Pulp Pap. Res. J., 26, 306, 10.3183/NPPRJ-2011-26-03-p306-311

Manhas, 2015, PCL/PVA nanoencapsulated reinforcing fillers of steam exploded/autoclaved cellulose nanofibrils for tissue engineering applications, RSC Adv., 5, 23999, 10.1039/C4RA17191H

Markstedt, 2015, 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications, Biomacromolecules, 16, 1489, 10.1021/acs.biomac.5b00188

Martoïa, 2015, Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear, Soft Matter, 10.1039/C5SM00530B

Medeiros, 2008, Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils, J. Biobased Mater. Bioenergy, 2, 231, 10.1166/jbmb.2008.411

Miao, 2015, Fast fabrication of transparent and multi-luminescent TEMPO-oxidized nanofibrillated cellulose nanopaper functionalized with lanthanide complexes, J. Mater. Chem. C, 3, 2511, 10.1039/C4TC02622E

Mishra, 2012, The use of sodium chlorite in post-oxidation of TEMPO-oxidized pulp: effect on pulp characteristics and nanocellulose yield, J. Wood Chem. Technol., 32, 137, 10.1080/02773813.2011.624666

Missoum, 2013, Nanofibrillated cellulose surface modification: a review, Materials, 6, 1745, 10.3390/ma6051745

Missoum, 2012, Water redispersible dried nanofibrillated cellulose by adding sodium chloride, Biomacromolecules, 13, 4118, 10.1021/bm301378n

Moon, 2011, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev., 40, 3941, 10.1039/c0cs00108b

Moser, 2015, Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers, BioResources, 10, 2360, 10.15376/biores.10.2.2360-2375

Nakagaito, 2015, Cellulose nanofiber extraction from grass by a modified kitchen blender, Mod. Phys. Lett. B, 29, 1540039, 10.1142/S0217984915400394

Nakagaito, 2004, The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites, Appl. Phys. A, 78, 547, 10.1007/s00339-003-2453-5

Nechyporchuk, 2014, Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena, Carbohydr. Polym., 112, 432, 10.1016/j.carbpol.2014.05.092

Nechyporchuk, 2015, Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process, J. Mater. Sci., 50, 531, 10.1007/s10853-014-8609-1

Nechyporchuk, 2015, Concentration effect of TEMPO-oxidized nanofibrillated cellulose aqueous suspensions on the flow instabilities and small-angle X-ray scattering structural characterization, Cellulose, 22, 2197, 10.1007/s10570-015-0640-0

Nogi, 2009, Optically transparent nanofiber paper, Adv. Mater., 21, 1595, 10.1002/adma.200803174

Olszewska, 2011, The behaviour of cationic NanoFibrillar cellulose in aqueous media, Cellulose, 18, 1213, 10.1007/s10570-011-9577-0

Osong, 2015, Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review, Cellulose, 1

Österberg, 2013, A fast method to produce strong NFC films as a platform for barrier and functional materials, ACS Appl. Mater. Interfaces, 5, 4640, 10.1021/am401046x

Pääkkö, 2007, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules, 8, 1934, 10.1021/bm061215p

Pääkkö, 2008, Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, 4, 2492, 10.1039/b810371b

Park, 2007, Preparation of electrospun porous ethyl cellulose fiber by THF/DMAc binary solvent system, J. Ind. Eng. Chem., 13, 1002

Peng, 2012, Drying cellulose nanofibrils: in search of a suitable method, Cellulose, 19, 91, 10.1007/s10570-011-9630-z

Pérez, 2002, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview, Int. Microbiol., 5, 53, 10.1007/s10123-002-0062-3

Pöhler, 2010, Influence of fibrillation method on the character of nanofibrillated cellulose (NFC), TAPPI International Conference on Nanotechnology for the Forest Products Industry

Qing, 2013, A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches, Carbohydr. Polym., 97, 226, 10.1016/j.carbpol.2013.04.086

Quiévy, 2010, Influence of homogenization and drying on the thermal stability of microfibrillated cellulose, Polym. Degrad. Stab., 95, 306, 10.1016/j.polymdegradstab.2009.11.020

Rånby, 1949, Aqueous colloidal solutions of cellulose micelles, Acta Chem. Scand., 3, 649, 10.3891/acta.chem.scand.03-0649

Rees, 2015, 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications, BioMed Res. Int., 2015, e925757, 10.1155/2015/925757

Rosgaard, 2007, Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates, Biotechnol. Prog., 23, 1270, 10.1021/bp070329p

Saarikoski, 2012, Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour, Cellulose, 19, 647, 10.1007/s10570-012-9661-0

Saini, 2016, Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces, Carbohydr. Polym., 135, 239, 10.1016/j.carbpol.2015.09.002

Saito, 2009, Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions, Biomacromolecules, 10, 1992, 10.1021/bm900414t

Saito, 2006, Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation, Colloids Surf. A: Physicochem. Eng. Aspects, 289, 219, 10.1016/j.colsurfa.2006.04.038

Saito, 2007, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules, 8, 2485, 10.1021/bm0703970

Saito, 2013, An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation, Biomacromolecules, 14, 248, 10.1021/bm301674e

Saito, 2006, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules, 7, 1687, 10.1021/bm060154s

Saito, 2011, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials, Soft Matter, 7, 8804, 10.1039/c1sm06050c

Sehaqui, 2010, Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions, Soft Matter, 6, 1824, 10.1039/b927505c

Sehaqui, 2011, High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC), Compos. Sci. Technol., 71, 1593, 10.1016/j.compscitech.2011.07.003

Shackford, 2003, A comparison of pulping and bleaching of kraft softwood and eucalyptus pulps

Shinoda, 2012, Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils, Biomacromolecules, 13, 842, 10.1021/bm2017542

Shmulsky, 2011

Shogren, 2011, Preparation and characterization of cellulose gels from corn cobs, Carbohydr. Polym., 86, 1351, 10.1016/j.carbpol.2011.06.035

Siqueira, 2010, Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose, 17, 1147, 10.1007/s10570-010-9449-z

Siró, 2010, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17, 459, 10.1007/s10570-010-9405-y

Siró, 2011, Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties, J. Appl. Polym. Sci., 119, 2652, 10.1002/app.32831

Sirviö, 2014, Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments, ACS Appl. Mater. Interfaces, 6, 14384, 10.1021/am503659j

Sirviö, 2015, Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose, Green Chem., 17, 3401, 10.1039/C5GC00398A

Sjöström, 1981

Song, 2008, Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers, Biomacromolecules, 9, 2259, 10.1021/bm800429a

Spence, 2010, The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties, Bioresour. Technol., 101, 5961, 10.1016/j.biortech.2010.02.104

Spence, 2011, A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods, Cellulose, 18, 1097, 10.1007/s10570-011-9533-z

Spinu, 2011, How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent?, Cellulose, 18, 247, 10.1007/s10570-010-9485-8

Stelte, 2009, Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps, Ind. Eng. Chem. Res., 48, 11211, 10.1021/ie9011672

Stevanic, 2011, Bacterial nanocellulose‐reinforced arabinoxylan films, J. Appl. Polym. Sci., 122, 1030, 10.1002/app.34217

Sun, 2005, Characteristics of degraded cellulose obtained from steam-exploded wheat straw, Carbohydr. Res., 340, 97, 10.1016/j.carres.2004.10.022

Suzuki, 2013, Development of continuous process enabling nanofibrillation of pulp and melt compounding, Cellulose, 20, 201, 10.1007/s10570-012-9843-9

Svensk Papperstidning, 2015. Chalmersforskare bryter ny mark med cellulosa från trä i 3D-skrivare, 6. http://spt.spci.se/pdf_article/buy/2197-Chalmersforskare_bryter_ny_mark_med_cellulosa_fran_trae_i_3D_skrivare.

Syverud, 2011, A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils, Carbohydr. Polym., 84, 1033, 10.1016/j.carbpol.2010.12.066

Syverud, 2009, Strength and barrier properties of MFC films, Cellulose, 16, 75, 10.1007/s10570-008-9244-2

Tanaka, 2012, Nanocellulose characterization with mechanical fractionation, Nordic Pulp Pap. Res. J., 27, 689, 10.3183/NPPRJ-2012-27-04-p689-694

Tangnu, 1982, Process development for ethanol production based on enzymatic hydrolysis of cellulosic biomass, Process Biochem., 17, 36

Taniguchi, 1998, New films produced from microfibrillated natural fibres, Polym. Int., 47, 291, 10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1

Tejado, 2012, Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers, Cellulose, 19, 831, 10.1007/s10570-012-9694-4

Taipale, 2010, Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength, Cellulose, 17, 1005, 10.1007/s10570-010-9431-9

Turbak, A.F., Snyder, F.W., Sandberg, K.R., 1983. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko, A. (Ed.), Proceedings of the Ninth Cellulose Conference. Applied Polymer Symposia, vol. 37. Wiley, N.Y., pp. 815–827.

Turbak, A.F., Snyder, F.W., Sandberg, K.R., 1983. Microfibrillated cellulose. Patent U.S. 4374702.

Turon, 2008, Enzymatic kinetics of cellulose hydrolysis: a QCM-D study, Langmuir, 24, 3880, 10.1021/la7032753

Uetani, 2011, Nanofibrillation of wood pulp using a high-speed blender, Biomacromolecules, 12, 348, 10.1021/bm101103p

Usov, 2015, Understanding nanocellulose chirality and structure-properties relationship at the single fibril level, Nat. Commun., 6, 7564, 10.1038/ncomms8564

Väljamäe, 1998, The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model, Eur. J. Biochem., 253, 469, 10.1046/j.1432-1327.1998.2530469.x

Varshney, 2011, Chemical functionalization of cellulose derived from nonconventional sources, 43

Wan, 2015, Ultralight and hydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties, J. Appl. Polym. Sci., 132

Wang, 2009, A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization, J. Appl. Polym. Sci., 113, 1270, 10.1002/app.30072

Wang, 2007, Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers, Compos. Sci. Technol., 67, 2521, 10.1016/j.compscitech.2006.12.015

Wang, 2007, Study of structural morphology of hemp fiber from the micro to the nanoscale, Appl. Compos. Mater., 14, 89, 10.1007/s10443-006-9032-9

Wang, 2012, Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation, Cellulose, 19, 1631, 10.1007/s10570-012-9745-x

Wågberg, 2008, The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes, Langmuir, 24, 784, 10.1021/la702481v

Wertz, 2010, 21

Wiedenhoeft, 2005, Structure and function of wood, 9

Xu, 2014, Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly (ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures, Macromolecules, 47, 3409, 10.1021/ma402627j

Zhao, 1999, Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach, J. Org. Chem., 64, 2564, 10.1021/jo982143y

Zhang, 2015, Preparation of cellulose nanofiber from softwood pulp by ball milling, Cellulose, 22, 1729, 10.1007/s10570-015-0582-6

Zhou, 2000, Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi, J. Bacteriol., 182, 5676, 10.1128/JB.182.20.5676-5682.2000

Zhou, 2012, Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films, Express Polym. Lett., 6, 794, 10.3144/expresspolymlett.2012.85

Zhu, 2012, A novel nano cellulose preparation method and size fraction by cross flow ultra-filtration, Curr. Org. Chem., 16, 1871, 10.2174/138527212802651197

Žepič, 2014, Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC), Holzforschung, 68, 657, 10.1515/hf-2013-0132

Zimmermann, 2004, Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater., 6, 754, 10.1002/adem.200400097