Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain

Biochemical Engineering Journal - Tập 172 - Trang 108060 - 2021
María Guadalupe Morán-Aguilar1, Iván Costa-Trigo2,3, Montserrat Calderón‐Santoyo1, José Manuel Domínguez2,3, María Guadalupe Aguilar‐Uscanga4
1Tecnológico Nacional de México/I. T. de Tepic, Integral Food Research Laboratory, C.P. 63175 Tepic, Nayarit, Mexico
2Department of Chemical Engineering, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
3Laboratory of Agro-food Biotechnology, CITI (University of Vigo)-Tecnólpole, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
4Tecnológico Nacional de México/I. T. Veracruz, Unidad de Investigación y Desarrollo en Alimentos (UNIDA), Czda. M. A. de Quevedo Núm. 2779, C.P. 91860, Veracruz, Veracruz, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pirota, 2013, Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps, Biotechnol. Prog., 29, 1430, 10.1002/btpr.1811

Cunha, 2012, Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase, Bioresour. Technol., 112, 270, 10.1016/j.biortech.2012.02.082

Lan, 2013, Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor, Bioresour. Technol., 133, 175, 10.1016/j.biortech.2013.01.088

Kashyap, 2002, Extra-cellular L -glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation, Process Biochem., 38, 307, 10.1016/S0032-9592(02)00060-2

Archana, 1997, Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation, Enzyme Microb. Technol., 21, 12, 10.1016/S0141-0229(96)00207-4

Rocha, 2013, Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium, Electron. J. Biotechnol., 16, 1, 10.2225/vol16-issue5-fulltext-1

Outeiriño, 2019, Biorefining brewery spent grain polysaccharides through biotuning of ionic liquids, Carbohydr. Polym., 203, 265, 10.1016/j.carbpol.2018.09.042

Juturu, 2012, Microbial xylanases: engineering, production and industrial applications, Biotechnol. Adv., 30, 1219, 10.1016/j.biotechadv.2011.11.006

Dos Santos, 2012, Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes, Food Chem., 133, 1299, 10.1016/j.foodchem.2011.11.115

Pérez-Rodríguez, 2014, Optimization of xylanase production by filamentous fungi in solid-state fermentation and scale-up to horizontal tube bioreactor, Appl. Biochem. Biotechnol., 173, 803, 10.1007/s12010-014-0895-1

Bansal, 2012, Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues, Waste Manag., 32, 1341, 10.1016/j.wasman.2012.03.006

Kumar, 2020

Salmon, 2014, Analysis of inducers of xylanase and cellulase activities production by Ganoderma applanatum LPB MR-56, Fungal Biol., 118, 655, 10.1016/j.funbio.2014.04.003

Xia, 1999, Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry, Process Biochem., 34, 909, 10.1016/S0032-9592(99)00015-1

Brijwani, 2011, Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate, Enzyme Res., 2011, 1, 10.4061/2011/860134

Infanzon-Rodríguez, 2020, 22, 266

Chen, 2011, Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating, Appl. Energy, 88, 2726, 10.1016/j.apenergy.2011.02.027

Pérez-Rodríguez, 2016, Enzyme and Microbial Technology Feruloyl esterase production by Aspergillus terreus CECT 2808 and subsequent application to enzymatic hydrolysis, Enzyme Microb. Technol., 91, 52, 10.1016/j.enzmictec.2016.05.011

Rocha, 2012, Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification, Bioresour. Technol., 111, 447, 10.1016/j.biortech.2012.02.005

Bonnin, 2002, Release of ferulic acid from agroindustrial by-products by the cell wall-degrading enzymes produced by Aspergillus niger I-1472, Enzyme Microb. Technol., 31, 1000, 10.1016/S0141-0229(02)00236-3

Sluiter, 2011

Ortega Platas, 2011

Ghose, 1987, Measurement of cellulase activities, Pure Appl. Chem., 59, 257, 10.1351/pac198759020257

Bailey, 1992, Interlaboratory testing of methods for assay of xylanase activity, J. Biotechnol., 23, 257, 10.1016/0168-1656(92)90074-J

Salomão, 2019, Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi, Biocatal. Agric. Biotechnol., 17, 1, 10.1016/j.bcab.2018.10.019

Pal, 2010, Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation, Bioresour. Technol., 101, 7563, 10.1016/j.biortech.2010.04.033

Kristensen, 2007, Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose, Enzyme Microb. Technol., 40, 888, 10.1016/j.enzmictec.2006.07.014

Belén, 2010, Biotechnological productions of citric acid, Braz. J. Microbiol., 41, 53

Perlman, 1949, Effects of minor elements on the physiology of fungi, Author (s): D. Perlman Published by: Springer on behalf of New York Botanical Garden Press Stable, Bot. Rev., 15, 195, 10.1007/BF02861722

Shu, 1948, The interdependence of medium constituents in citric acid production by submerged fermentation, J. Bacteriol., 56, 577, 10.1128/jb.56.5.577-585.1948

Monteil-Rivera, 2012, Microwave-assisted extraction of lignin from triticale straw: optimization and microwave effects, Bioresour. Technol., 104, 775, 10.1016/j.biortech.2011.11.079

Kulkarni, 1999, Molecular and biotechnological aspects of xylanases, FEMS Microbiol. Rev., 23, 411, 10.1111/j.1574-6976.1999.tb00407.x

Hendriks, 2009, Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresour. Technol., 100, 10, 10.1016/j.biortech.2008.05.027

Rahnama, 2013, Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation, BioResources, 8, 2881, 10.15376/biores.8.2.2881-2896

Gutiérrez-Rojas, 2015, Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models, Rev. Iberoam. Micol., 32, 1, 10.1016/j.riam.2013.10.009

Gielkens, 1999, Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression, Appl. Environ. Microbiol., 65, 4340, 10.1128/AEM.65.10.4340-4345.1999

de Vries, 1999, CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation, Res. Microbiol., 150, 281, 10.1016/S0923-2508(99)80053-9

El-Shishtawy, 2014, Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium, BMC Biotechnol., 14, 1, 10.1186/1472-6750-14-29

Ahmad, 2012, Effect of corn cobs concentration on xylanase biosynthesis by Aspergillus niger, African J. Biotechnol., 11

Benedetti, 2013, Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger, Rev. Ciencias Farm. Basica e Apl., 34, 25

Kaur, 2020, A low-cost approach for the generation of enhanced sugars and ethanol from rice straw using in-house produced cellulase-hemicellulase consortium fromA. niger P-19, Bioresour. Technol. Rep., 11, 100469, 10.1016/j.biteb.2020.100469

Yoon, 2014, Fungal solid-state fermentation and various methods of enhancement in cellulase production, Biomass Bioenergy, 67, 319, 10.1016/j.biombioe.2014.05.013

Soliman, 2012, Production of Xylanase by Aspergillus niger and Thrichoderma viride using some agriculture residues, Int. J. Agric. Res., 46

Mrudula, 2011, Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate, Braz. J. Microbiol., 42, 1119, 10.1590/S1517-83822011000300033

Singh, 2012, Utilization of agro-industrial wastes for the simultaneous production of amylase and xylanase by Thermophilic actinomycetes, Braz. J. Microbiol., 43, 1545, 10.1590/S1517-83822012000400039

Soccol, 1994, Comparative production of alpha-amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in sumerged and solid state fermentations, J. Food Sci. Technol., 31, 320

Kashyap, 2002, Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation, Process Biochem., 38, 307, 10.1016/S0032-9592(02)00060-2

Raol, 2015, Utilization of agro-industrial waste for β-galactosidase production under solid state fermentation using halotolerant Aspergillus tubingensis GR1 isolate, 3 Biotech, 5, 411, 10.1007/s13205-014-0236-7

Ramachandran, 2004, Coconut oil cake - a potential raw material for the production of α-amylase, Bioresour. Technol., 93, 169, 10.1016/j.biortech.2003.10.021

Abd-Elhalem, 2015, Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products, Ann. Agric. Sci., 60, 193, 10.1016/j.aoas.2015.06.001

Yazid, 2017, Solid-state fermentation as a novel paradigm for organic waste valorization: a review, Sustain., 9, 1

Behera, 2016, Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies, Int. J. Biol. Macromol., 86, 656, 10.1016/j.ijbiomac.2015.10.090

Seong, 2016, Fermentation characteristics of acid hydrolysates by different neutralizing agents, Int. J. Hydrogen Energy, 41, 16365, 10.1016/j.ijhydene.2016.05.003

Kang, 2004, Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass, Bioresour. Technol., 91, 153, 10.1016/S0960-8524(03)00172-X

Adsul, 2004, Polysaccharides from bagasse: applications in cellulase and xylanase production, Carbohydr. Polym., 57, 67, 10.1016/j.carbpol.2004.04.001

de Castro, 2010, Economic analysis of the production of amylases and other hydrolases by Aspergillus awamori in solid-state fermentation of babassu cake, Enzyme Res., 2010, 10.4061/2010/576872

Shahriarinour, 2011, Cyanobacterial biomass as n-supplement to oil palm empty fruit bunch (opefb) fibre for improvement of cellulase production by Aspergillus terreus in submerged fermentation, BioResources, 6, 1696, 10.15376/biores.6.2.1696-1706

Zhuang, 2007, Economic analysis of cellulase production methods for bio-ethanol, Appl. Eng. Agric., 23, 679, 10.13031/2013.23659

Prajapati, 2020, Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production, Renew. Energy, 152, 653, 10.1016/j.renene.2020.01.063

Panesar, 2016, Bio-processing of agro-industrial wastes for production of food-grade enzymes: progress and prospects, Appl. Food Biotechnol., 3, 208

Balan, 2014, 1

Maitan-alfenas, 2016, Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans, Int. J. Biol. Macromol., 91, 60, 10.1016/j.ijbiomac.2016.05.065

Qu, 2017, Enhanced saccharification of cellulose and sugarcane bagasse by Clostridium thermocellum cultures with Triton X-100 and β-glucosidase/Cellic®CTec2 supplementation, RSC Adv., 35, 21360, 10.1039/C7RA02477K

Prajapati, 2020, Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production, Renew. Energy, 152, 653, 10.1016/j.renene.2020.01.063

Patel, 2021, Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products, JB&B, 1