Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhu D, Wu Q, Wang N (2011) Industrial enzymes. Comprehensive biotechnology, 2nd edn. Elsevier, Amsterdam
Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351
Adrio JL, Demain AL (2010) Recombinant organisms for production of industrial products. Bioeng Bugs 1:116–131. https://doi.org/10.4161/bbug.1.2.10484
Ferrer-Miralles N, Villaverde A, BacteriFerrer-Miralles N, Villaverde A (2013) Bacterial cell factories for recombinant protein production; expanding the catalogue. Microbial Cell Factories 12(1):113. https://doi.org/10.1186/1475-2859-12-113al
Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270
Buckholz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/Technology. https://doi.org/10.1038/nbt1191-1067
Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-009-0638-4
Heilig ML (1994) Enzymic degradation of nucleic acids in SCIP materials. ACM SIGGRAPH Comput Graph 28:131–134
Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol. https://doi.org/10.1128/mcb.5.12.3376
Hasslacher M, Schall M, Hayn M et al (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr Purif. https://doi.org/10.1006/prep.1997.0765
Liu WC, Gong T, Wang QH et al (2016) Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep 6:1–12. https://doi.org/10.1038/srep18439
Baeshen NA, Baeshen MN, Sheikh A et al (2014) Cell factories for insulin production. Microb Cell Fact. https://doi.org/10.1186/s12934-014-0141-0
Thongekkaew J, Ikeda H, Masaki K, Iefuji H (2008) An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2008.03.021
Gomes AR, Byregowda SM, Veeregowda BM, Balamurugan V (2016) An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci. https://doi.org/10.14737/journal.aavs/2016/4.7.346.356
Ahmad I, Nawaz N, Darwesh NM et al (2018) Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif 144:12–18
Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol. https://doi.org/10.1128/JB.01368-07
Sivashanmugam A, Murray V, Cui C et al (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci. https://doi.org/10.1002/pro.102
Pope B, Kent HM (1996) High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Res. https://doi.org/10.1093/nar/24.3.536
Peleg Y, Unger T (2012) Resolving bottlenecks for recombinant protein expression in E. coli. Methods Mol Biol. https://doi.org/10.1007/978-1-61779-349-3_12
Liu ZW, Yin HX, Yi XP et al (2012) Constitutive expression of barley α-amylase in Pichia pastoris by high-density cell culture. Mol Biol Rep. https://doi.org/10.1007/s11033-011-1390-1
Liu Z, Tyo KEJ, Martínez JL et al (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng. https://doi.org/10.1002/bit.24409
Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363–372
Hahn-Hägerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953
Morton CL, Potter PM (2000) Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 cells for recombinant gene expression: application to a rabbit liver carboxylesterase. Appl Biochem Biotechnol Part B Mol Biotechnol. https://doi.org/10.1385/MB:16:3:193
Duman ZE, Duraksoy BB, Aktaş F et al (2020) High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2020.109552
Yang S, Kuang Y, Li H et al (2013) Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1’ site. PLoS One. https://doi.org/10.1371/journal.pone.0075347
Shu M, Shen W, Wang X et al (2015) Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115. Protein Expr Purif. https://doi.org/10.1016/j.pep.2015.06.014
Liu WC, Inwood S, Gong T et al (2019) Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 39:258–271. https://doi.org/10.1080/07388551.2018.1554620
Juturu V, Wu JC (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. ChemBioChem 19:7–21. https://doi.org/10.1002/cbic.201700460
Kittl R, Gonaus C, Pillei C et al (2012) Constitutive expression of Botrytis aclada laccase in Pichia pastoris. Bioengineered. https://doi.org/10.4161/bioe.20037
Qin X, Qian J, Yao G et al (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02843-10
YaPing W, Ben R, Hong Y et al (2017) High-level expression of L-glutamate oxidase in Pichia pastoris using multi-copy expression strains and high cell density cultivation. Protein Expr Purif 129:108–114. https://doi.org/10.1016/j.pep.2016.09.014
De Schutter K, Lin YC, Tiels P et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol. https://doi.org/10.1038/nbt.1544
Mattanovich D, Graf A, Stadlmann J et al (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/1475-2859-8-29
Liu W, Xiang H, Zhang T et al (2020) Development of a new high-cell density fermentation strategy for enhanced production of a fungus β-glucosidase in Pichia pastoris. Front Microbiol 11:1–16. https://doi.org/10.3389/fmicb.2020.01988
Giesselmann E, Becker B, Schmitt MJ (2017) Production of fluorescent and cytotoxic K28 killer toxin variants through high cell density fermentation of recombinant Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/s12934-017-0844-0
Invitrogen Corporation (2002) Pichia fermentation process guidelines overview overview, continued. Prog Bot 67:1–11
Li C, Lin Y, Zheng X et al (2015) Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris. BMC Biotechnol 15:1–11. https://doi.org/10.1186/s12896-015-0204-2
Cos O, Ramón R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:1–20
Berrios J, Flores MO, Díaz-Barrera A et al (2017) A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-016-1895-7
Katrolia P, Yan Q, Jia H et al (2011) Molecular cloning and high-level expression of a β-galactosidase gene from Paecilomyces aerugineus in Pichia pastoris. J Mol Catal B Enzym. https://doi.org/10.1016/j.molcatb.2011.01.004
Zheng X, Zhang Y, Liu X et al (2020) High-level expression and biochemical properties of a thermo-alkaline pectate lyase from Bacillus sp. RN1 in Pichia pastoris with potential in Ramie degumming. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00850
Meng Y, Zhao M, Yang M et al (2014) Production and characterization of recombinant glucose oxidase from aspergillus niger expressed in Pichia pastoris. Lett Appl Microbiol 58:393–400. https://doi.org/10.1111/lam.12202
Yang Y, Huang L, Wang J et al (2014) Efficient expression, purification, and characterization of a novel FAD-dependent glucose dehydrogenase from Aspergillus terreus in Pichia pastoris. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1401.01061
Shi XL, Feng MQ, Shi J et al (2007) High-level expression and purification of recombinant human catalase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2007.02.008
Majeke BM, García-Aparicio M, Biko OD et al (2020) Synergistic codon optimization and bioreactor cultivation toward enhanced secretion of fungal lignin peroxidase in Pichia pastoris: enzymatic valorization of technical (industrial) lignins. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2020.109593
Türkanoğlu Özçelik A, Ersöz F, İnan M (2019) Extracellular production of the recombinant bacterial transglutaminase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2019.03.003
Zheng J, Lan X, Li X, jun, et al (2019) High-level expression and characterization of a stereoselective lipase from Aspergillus oryzae in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2018.10.012
Jahic M, Wallberg F, Bollok M et al (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb Cell Fact 2:1–11. https://doi.org/10.1186/1475-2859-2-6
Zhong X, Peng L, Zheng S et al (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2004.04.016
Huang J, Yang Z, Guan F et al (2013) A novel mono- and diacylglycerol lipase highly expressed in Pichia pastoris and its application for food emulsifier preparation. Process Biochem. https://doi.org/10.1016/j.procbio.2013.08.021
Chen CC, Wu PH, Huang CT, Cheng KJ (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2004.05.007
Joye IJ, Beliën T, Brijs K et al (2010) Characterisation of the first wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase resembling mammalian counterparts. J Cereal Sci. https://doi.org/10.1016/j.jcs.2010.01.009
Elena C, Ravasi P, Cerminati S et al (2016) Pichia pastoris engineering for the production of a modified phospholipase C. Process Biochem. https://doi.org/10.1016/j.procbio.2016.08.022
Chen X, Meng K, Shi P et al (2012) High-level expression of a novel Penicillium endo-1,3(4)-β-D-glucanase with high specific activity in Pichia pastoris. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-012-1087-z
He M, Wu D, Wu J, Chen J (2014) Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-013-1341-z
Li YY, Zhong KX, Hu AH et al (2015) High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2014.11.014
Chen L, Zhou X, Fan W, Zhang Y (2008) Expression, purification and characterization of a recombinant Lipomyces starkey dextranase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2007.10.021
Schilling BM, Goodrick JC, Wan NC (2001) Scale-up of a high cell-density continuous culture with Pichia pastoris X-33 for the constitutive expression of rh-chitinase. Biotechnol Prog. https://doi.org/10.1021/bp010041e
Peng XB, Chen GJ, Han ZG, Yang JK (2019) High-level secretive expression of a novel achieved Talaromyces cellulolyticus endo-polygalacturonase in Pichia pastoris by improving gene dosage for hydrolysis of natural pectin. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-019-2657-2
Zhou X, Yu Y, Tao J, Yu L (2014) Production of LYZL6, a novel human c-type lysozyme, in recombinant Pichia pastoris employing high cell density fed-batch fermentation. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2014.03.009
Naested H, Kramhøft B, Lok F et al (2006) Production of enzymatically active recombinant full-length barley high pI α-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification. Protein Expr Purif. https://doi.org/10.1016/j.pep.2005.10.008
Zhu A, Monahan C, Zhang Z et al (1995) High-level expression and purification of coffee bean α-galactosidase produced in the yeast Pichia pastoris. Arch Biochem Biophys. https://doi.org/10.1006/abbi.1995.9928
Li Y, Yi P, Liu J et al (2018) High-level expression of an engineered Β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.01.138
Veana F, Fuentes-Garibay JA, Aguilar CN et al (2014) Gene encoding a novel invertase from a xerophilic aspergillus niger strain and production of the enzyme in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2014.05.001
Li Y, Zhang L, Ding Z, Shi G (2013) Constitutive expression of a novel isoamylase from Bacillus lentus in Pichia pastoris for starch processing. Process Biochem. https://doi.org/10.1016/j.procbio.2013.07.001
Jin P, Kang Z, Zhang N et al (2014) High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep. https://doi.org/10.1038/srep04471
Zhao H, Blazanovic K, Choi Y et al (2014) Gene and protein sequence optimization for high-level production of fully active and aglycosylated lysostaphin in Pichia pastoris. Appl Environ Microbiol 80:2746–2753. https://doi.org/10.1128/AEM.03914-13
Li H, Wang S, Zhang Y, Chen L (2018) High-level expression of a thermally stable alginate lyase using Pichia pastoris, characterization and application in producing brown alginate oligosaccharide. Mar Drugs. https://doi.org/10.3390/md16050158
Wang Y, Wang Z, Xu Q et al (2009) Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochem. https://doi.org/10.1016/j.procbio.2009.04.019
Ata Ö, Boy E, Güneş H, Çalik P (2015) Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-014-1333-z
Shen W, Xue Y, Liu Y et al (2016) A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact. https://doi.org/10.1186/s12934-016-0578-4
Landes N, Gasser B, Vorauer-Uhl K et al (2016) The vitamin-sensitive promoter PTHI11 enables pre-defined autonomous induction of recombinant protein production in Pichia pastoris. Biotechnol Bioeng. https://doi.org/10.1002/bit.26041
Wang J, Wang X, Shi L et al (2017) Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci Rep. https://doi.org/10.1038/srep41850
Menendez J, Valdes I, Cabrera N (2003) The ICLI gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast. https://doi.org/10.1002/yea.1028
de Macedo Robert J, Garcia-Ortega X, Montesinos-Seguí JL et al (2019) Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris. Biochem Eng J. https://doi.org/10.1016/j.bej.2019.03.027
Vadhana AKP, Samuel P, Berin RM et al (2013) Improved secretion of Candida antarctica lipase B with its native signal peptide in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2013.01.001
Lin-Cereghino J, Lin-Cereghino GP (2007) Vectors and strains for expression. Methods Mol Biol 389:11–26
Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317. https://doi.org/10.1007/s00253-014-5732-5
Liu Q, Shi X, Song L et al (2019) CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1194-x
Chauhan AK, Arora D, Khanna N (1999) A novel feeding strategy for enhanced protein production by fed-batch fermentation in recombinant Pichia pastoris. Process Biochem 34:139–145. https://doi.org/10.1016/S0032-9592(98)00080-6
Kaushik N, Rohila D, Arora U et al (2016) Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris. BMC Biotechnol 16:1–9. https://doi.org/10.1186/s12896-016-0243-3