Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects

The Protein Journal - Tập 40 Số 3 - Trang 367-376 - 2021
Zeynep Efsun Duman-Özdamar1, Barış Bi̇nay2
1Department of Bioengineering, Gebze Technical University, 41400, Gebze Kocaeli, Turkey
2Department of Bioengineering, Gebze Technical University, Gebze, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhu D, Wu Q, Wang N (2011) Industrial enzymes. Comprehensive biotechnology, 2nd edn. Elsevier, Amsterdam

Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

Adrio JL, Demain AL (2010) Recombinant organisms for production of industrial products. Bioeng Bugs 1:116–131. https://doi.org/10.4161/bbug.1.2.10484

Ferrer-Miralles N, Villaverde A, BacteriFerrer-Miralles N, Villaverde A (2013) Bacterial cell factories for recombinant protein production; expanding the catalogue. Microbial Cell Factories 12(1):113. https://doi.org/10.1186/1475-2859-12-113al

Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270

Buckholz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/Technology. https://doi.org/10.1038/nbt1191-1067

Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-009-0638-4

Heilig ML (1994) Enzymic degradation of nucleic acids in SCIP materials. ACM SIGGRAPH Comput Graph 28:131–134

Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol. https://doi.org/10.1128/mcb.5.12.3376

Hasslacher M, Schall M, Hayn M et al (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr Purif. https://doi.org/10.1006/prep.1997.0765

Liu WC, Gong T, Wang QH et al (2016) Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep 6:1–12. https://doi.org/10.1038/srep18439

Baeshen NA, Baeshen MN, Sheikh A et al (2014) Cell factories for insulin production. Microb Cell Fact. https://doi.org/10.1186/s12934-014-0141-0

Thongekkaew J, Ikeda H, Masaki K, Iefuji H (2008) An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2008.03.021

Gomes AR, Byregowda SM, Veeregowda BM, Balamurugan V (2016) An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci. https://doi.org/10.14737/journal.aavs/2016/4.7.346.356

Ahmad I, Nawaz N, Darwesh NM et al (2018) Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif 144:12–18

Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol. https://doi.org/10.1128/JB.01368-07

Sivashanmugam A, Murray V, Cui C et al (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci. https://doi.org/10.1002/pro.102

Pope B, Kent HM (1996) High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Res. https://doi.org/10.1093/nar/24.3.536

Peleg Y, Unger T (2012) Resolving bottlenecks for recombinant protein expression in E. coli. Methods Mol Biol. https://doi.org/10.1007/978-1-61779-349-3_12

Valero F (2012) Heterologous expression systems for lipases: a review. Methods Mol Biol 861:161–178

Liu ZW, Yin HX, Yi XP et al (2012) Constitutive expression of barley α-amylase in Pichia pastoris by high-density cell culture. Mol Biol Rep. https://doi.org/10.1007/s11033-011-1390-1

Liu Z, Tyo KEJ, Martínez JL et al (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng. https://doi.org/10.1002/bit.24409

Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363–372

Hahn-Hägerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

Morton CL, Potter PM (2000) Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 cells for recombinant gene expression: application to a rabbit liver carboxylesterase. Appl Biochem Biotechnol Part B Mol Biotechnol. https://doi.org/10.1385/MB:16:3:193

Duman ZE, Duraksoy BB, Aktaş F et al (2020) High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2020.109552

Yang S, Kuang Y, Li H et al (2013) Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1’ site. PLoS One. https://doi.org/10.1371/journal.pone.0075347

Shu M, Shen W, Wang X et al (2015) Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115. Protein Expr Purif. https://doi.org/10.1016/j.pep.2015.06.014

Liu WC, Inwood S, Gong T et al (2019) Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 39:258–271. https://doi.org/10.1080/07388551.2018.1554620

Juturu V, Wu JC (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. ChemBioChem 19:7–21. https://doi.org/10.1002/cbic.201700460

Kittl R, Gonaus C, Pillei C et al (2012) Constitutive expression of Botrytis aclada laccase in Pichia pastoris. Bioengineered. https://doi.org/10.4161/bioe.20037

Qin X, Qian J, Yao G et al (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02843-10

YaPing W, Ben R, Hong Y et al (2017) High-level expression of L-glutamate oxidase in Pichia pastoris using multi-copy expression strains and high cell density cultivation. Protein Expr Purif 129:108–114. https://doi.org/10.1016/j.pep.2016.09.014

De Schutter K, Lin YC, Tiels P et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol. https://doi.org/10.1038/nbt.1544

Mattanovich D, Graf A, Stadlmann J et al (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/1475-2859-8-29

Liu W, Xiang H, Zhang T et al (2020) Development of a new high-cell density fermentation strategy for enhanced production of a fungus β-glucosidase in Pichia pastoris. Front Microbiol 11:1–16. https://doi.org/10.3389/fmicb.2020.01988

Giesselmann E, Becker B, Schmitt MJ (2017) Production of fluorescent and cytotoxic K28 killer toxin variants through high cell density fermentation of recombinant Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/s12934-017-0844-0

Invitrogen Corporation (2002) Pichia fermentation process guidelines overview overview, continued. Prog Bot 67:1–11

Li C, Lin Y, Zheng X et al (2015) Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris. BMC Biotechnol 15:1–11. https://doi.org/10.1186/s12896-015-0204-2

Cos O, Ramón R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:1–20

Berrios J, Flores MO, Díaz-Barrera A et al (2017) A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-016-1895-7

Katrolia P, Yan Q, Jia H et al (2011) Molecular cloning and high-level expression of a β-galactosidase gene from Paecilomyces aerugineus in Pichia pastoris. J Mol Catal B Enzym. https://doi.org/10.1016/j.molcatb.2011.01.004

Zheng X, Zhang Y, Liu X et al (2020) High-level expression and biochemical properties of a thermo-alkaline pectate lyase from Bacillus sp. RN1 in Pichia pastoris with potential in Ramie degumming. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00850

Meng Y, Zhao M, Yang M et al (2014) Production and characterization of recombinant glucose oxidase from aspergillus niger expressed in Pichia pastoris. Lett Appl Microbiol 58:393–400. https://doi.org/10.1111/lam.12202

Yang Y, Huang L, Wang J et al (2014) Efficient expression, purification, and characterization of a novel FAD-dependent glucose dehydrogenase from Aspergillus terreus in Pichia pastoris. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1401.01061

Shi XL, Feng MQ, Shi J et al (2007) High-level expression and purification of recombinant human catalase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2007.02.008

Majeke BM, García-Aparicio M, Biko OD et al (2020) Synergistic codon optimization and bioreactor cultivation toward enhanced secretion of fungal lignin peroxidase in Pichia pastoris: enzymatic valorization of technical (industrial) lignins. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2020.109593

Türkanoğlu Özçelik A, Ersöz F, İnan M (2019) Extracellular production of the recombinant bacterial transglutaminase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2019.03.003

Zheng J, Lan X, Li X, jun, et al (2019) High-level expression and characterization of a stereoselective lipase from Aspergillus oryzae in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2018.10.012

Jahic M, Wallberg F, Bollok M et al (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb Cell Fact 2:1–11. https://doi.org/10.1186/1475-2859-2-6

Zhong X, Peng L, Zheng S et al (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2004.04.016

Huang J, Yang Z, Guan F et al (2013) A novel mono- and diacylglycerol lipase highly expressed in Pichia pastoris and its application for food emulsifier preparation. Process Biochem. https://doi.org/10.1016/j.procbio.2013.08.021

Chen CC, Wu PH, Huang CT, Cheng KJ (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2004.05.007

Joye IJ, Beliën T, Brijs K et al (2010) Characterisation of the first wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase resembling mammalian counterparts. J Cereal Sci. https://doi.org/10.1016/j.jcs.2010.01.009

Elena C, Ravasi P, Cerminati S et al (2016) Pichia pastoris engineering for the production of a modified phospholipase C. Process Biochem. https://doi.org/10.1016/j.procbio.2016.08.022

Chen X, Meng K, Shi P et al (2012) High-level expression of a novel Penicillium endo-1,3(4)-β-D-glucanase with high specific activity in Pichia pastoris. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-012-1087-z

He M, Wu D, Wu J, Chen J (2014) Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-013-1341-z

Li YY, Zhong KX, Hu AH et al (2015) High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2014.11.014

Chen L, Zhou X, Fan W, Zhang Y (2008) Expression, purification and characterization of a recombinant Lipomyces starkey dextranase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2007.10.021

Schilling BM, Goodrick JC, Wan NC (2001) Scale-up of a high cell-density continuous culture with Pichia pastoris X-33 for the constitutive expression of rh-chitinase. Biotechnol Prog. https://doi.org/10.1021/bp010041e

Peng XB, Chen GJ, Han ZG, Yang JK (2019) High-level secretive expression of a novel achieved Talaromyces cellulolyticus endo-polygalacturonase in Pichia pastoris by improving gene dosage for hydrolysis of natural pectin. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-019-2657-2

Zhou X, Yu Y, Tao J, Yu L (2014) Production of LYZL6, a novel human c-type lysozyme, in recombinant Pichia pastoris employing high cell density fed-batch fermentation. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2014.03.009

Naested H, Kramhøft B, Lok F et al (2006) Production of enzymatically active recombinant full-length barley high pI α-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification. Protein Expr Purif. https://doi.org/10.1016/j.pep.2005.10.008

Zhu A, Monahan C, Zhang Z et al (1995) High-level expression and purification of coffee bean α-galactosidase produced in the yeast Pichia pastoris. Arch Biochem Biophys. https://doi.org/10.1006/abbi.1995.9928

Li Y, Yi P, Liu J et al (2018) High-level expression of an engineered Β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.01.138

Veana F, Fuentes-Garibay JA, Aguilar CN et al (2014) Gene encoding a novel invertase from a xerophilic aspergillus niger strain and production of the enzyme in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2014.05.001

Li Y, Zhang L, Ding Z, Shi G (2013) Constitutive expression of a novel isoamylase from Bacillus lentus in Pichia pastoris for starch processing. Process Biochem. https://doi.org/10.1016/j.procbio.2013.07.001

Jin P, Kang Z, Zhang N et al (2014) High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep. https://doi.org/10.1038/srep04471

Zhao H, Blazanovic K, Choi Y et al (2014) Gene and protein sequence optimization for high-level production of fully active and aglycosylated lysostaphin in Pichia pastoris. Appl Environ Microbiol 80:2746–2753. https://doi.org/10.1128/AEM.03914-13

Li H, Wang S, Zhang Y, Chen L (2018) High-level expression of a thermally stable alginate lyase using Pichia pastoris, characterization and application in producing brown alginate oligosaccharide. Mar Drugs. https://doi.org/10.3390/md16050158

Wang Y, Wang Z, Xu Q et al (2009) Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochem. https://doi.org/10.1016/j.procbio.2009.04.019

Ata Ö, Boy E, Güneş H, Çalik P (2015) Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-014-1333-z

Shen W, Xue Y, Liu Y et al (2016) A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact. https://doi.org/10.1186/s12934-016-0578-4

Landes N, Gasser B, Vorauer-Uhl K et al (2016) The vitamin-sensitive promoter PTHI11 enables pre-defined autonomous induction of recombinant protein production in Pichia pastoris. Biotechnol Bioeng. https://doi.org/10.1002/bit.26041

Wang J, Wang X, Shi L et al (2017) Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci Rep. https://doi.org/10.1038/srep41850

Menendez J, Valdes I, Cabrera N (2003) The ICLI gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast. https://doi.org/10.1002/yea.1028

de Macedo Robert J, Garcia-Ortega X, Montesinos-Seguí JL et al (2019) Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris. Biochem Eng J. https://doi.org/10.1016/j.bej.2019.03.027

Vadhana AKP, Samuel P, Berin RM et al (2013) Improved secretion of Candida antarctica lipase B with its native signal peptide in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2013.01.001

Lin-Cereghino J, Lin-Cereghino GP (2007) Vectors and strains for expression. Methods Mol Biol 389:11–26

Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317. https://doi.org/10.1007/s00253-014-5732-5

Liu Q, Shi X, Song L et al (2019) CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1194-x

Chauhan AK, Arora D, Khanna N (1999) A novel feeding strategy for enhanced protein production by fed-batch fermentation in recombinant Pichia pastoris. Process Biochem 34:139–145. https://doi.org/10.1016/S0032-9592(98)00080-6

Kaushik N, Rohila D, Arora U et al (2016) Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris. BMC Biotechnol 16:1–9. https://doi.org/10.1186/s12896-016-0243-3

Ahmad M, Winkler CM, Kolmbauer M et al (2019) Pichia pastoris protease-deficient and auxotrophic strains generated by a novel, user-friendly vector toolbox for gene deletion. Yeast. https://doi.org/10.1002/yea.3426