Sản xuất Axit Indole-3-Acetique bởi Ba Loài Seimatosporium Gây Bệnh Ung Cổ và Héo Vàng ở Eucalyptus tereticornis

R. Y. Giri1, S. M. Reddy2
1Department of Botany, NM Govt. Degree College, Jogipet, India
2Department of Microbiology, Kakatiya University, Warangal, India

Tóm tắt

Nghiên cứu được tiến hành về sự sản xuất Axit Indole-3-Acetique bởi ba loài Seimatosporium (S. falcatum, S. fusisporum và S. discosioides) gây bệnh ung cổ và héo vàng cho cây Eucalyptus tereticornis. Mặc dù cả ba loài Seimatosporium đều sản xuất Axit Indole-3-Acetique, nhưng mức độ sản xuất khác nhau giữa các loài, môi trường nuôi cấy và thời gian ủ. Sản xuất Axit Indole-3-Acetique ở cả ba loài cao hơn trong môi trường có nguồn nitơ phức tạp. S. discosioides sản xuất một lượng Axit Indole-3-Acetique tương đối lớn hơn so với hai loài còn lại. Không có sự tương quan dương nào được quan sát giữa sự phát triển của mycelium, sản xuất Axit Indole-3-Acetique và độ pH của môi trường.

Từ khóa

#Seimatosporium #Axit Indole-3-Acetique #Eucalyptus tereticornis #bệnh cây

Tài liệu tham khảo

Maor R, Haskin S, Levi-Kendmi H, Sharon A (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70(3):1852–1854 Tanaka E, Kog AH, Mori M, Mori M (2011) Auxin production by the rice blast fungus and its localization in host tissue. Phytopathology 159:522–530 Chung KR, Tzeny DD (2004) Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J Biol Sci 4(6):744–750 Mahadeven A (1966) Biochemistry of infection and resistance. Phytopathology 57:96–99 Shaw M, Hawkins AR (1958) The physiology of host parasite relation-V. A preliminary examination of the level of free endogenous indole acetic acid in rusted and mildewed cereal leaves and their ability to decarboxylate exogenously supplied radioactive indole acetic acid. Can J Bot 36:1–16 Pegg CF, Selman JW (1959) An analysis of the response of young tomato plants to infection by Verticillium albo-atrum II. The production of growth substances. Ann Appl Biol 47:222–231 Daly JW, Kurpk LR, Bell AA (1962) Influence of hormones on respiratory metabolism of healthy and rust affected tissues. Plant Physiol 37:130–134 Yamada T (1993) The role of auxin in plant-disease development. Annu Rev Phytopathol 31:253–273 Manulis S, Haviv–Chensner A, Brandl MT, Lindow SE, Barash L (1998) Differential involvement of Indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophila. Mol Plant Microbe Interact 11:634–642 Barroso J, Neves H, Chaves, Pais MS (1986) Production of Indole-3-acetic acid by the mycorrhizal fungus of Ophrys lutea. New Phytol 103:745–749 Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 24:8–9 Brown ME (1972) Plant growth substances produced micro-organisms of soil and rhizosphere. J Appl Bacteriol 35:443–451 Banerjee M, Chandra AK (1978) Auxin production potentiality of nitrogen fixers isolated from the phyllosphere of crop plants. Curr Sci 47:962–963 Averil EB, Hamilton JTG (1992) Indole-3-ethanol produced by Zygorrhynchus moelleri an indole-3-acetic acid analogue with antifungal activity. Mycol Res 96:71–74 Laxma Reddy G, Reddy SM (1992) Production of IAA by some species of Fusarium. Natl Acad Sci Lett 15:8 Robinson M, Sharon A (1998) Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. Aeschynomene by electroporation of germinated conidia. Curr Genet 36:98–104 Bentlay JA (1962) Analysis of plant hormones. Methods Biochem Anal 9:9–125 Robinson M, Riov J, Sharon A (1998) Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp., Aeschynomene. Appl Environ Microbiol 64:5030–5032 Manulis S, Valinski L, Gafni Y, Hershenhorn J (1991) Indole-3-acetic acid biosynthetic pathway in Erwinia herbicola in relation to pathogenicity on Gypsophila paniculata. Physiol Mol Plant Pathol 39:161–171 Hutcheson SW, Kosuge T (1985) Regulation of indole-3-acetic acid production in Pseudomonas syringae. J Biol Chem 260:6281–6287 Bandursky RS, Cohan JD, Solven JD, Renecke DM (1995) Auxin biosynthesis and metabolism. In: Devis P (ed) Plant hormone; physiology, bio-chemistry and molecular biology. Kluwer Academic Publisher, Dordrecht, pp 39–65 Chung KR, Shilts T, Erturk U, Timmer LW, Ueng PP (2003) Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and post bloom fruit drop of Citrus. FEMS Microbiol Lett 226:23–30 Singaracharya MA, Reddy SM (1981) Synthesis of IAA by two species of Aspergillus. Geobios 7:178–179 Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 9:185–206 Yuan ZL, Zhang CL, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126 Rodriguez RJ, Woodward CJ, Redman RS (2012) Fungal influence on plant tolerance to stress. In: Southworth D (ed) Biocomplexity of plant-fungal interactions. Wiley-Blackwell, Oxford Waqas M, Latif Khan A, Kamran M, Hamayun M, Kang Sang-Mo, Kim Yoon-Ha, Lee In-jung (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773 Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2012) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res Technol Educ Top Appl Microbiol Microbial Biotechnol 1:567–576 (Formatex Research Center, Badajoz, Spain)