Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes
Tóm tắt
Oxylipins are oxygenated metabolites of fatty acids. Eicosanoids are a subset of oxylipins and include the prostaglandins and leukotrienes, which are potent regulators of host immune responses. Host cells are one source of eicosanoids and oxylipins during infection; however, another potential source of eicosanoids is the pathogen itself. A broad range of pathogenic fungi, protozoa, and helminths produce eicosanoids and other oxylipins by novel synthesis pathways. Why do these organisms produce oxylipins? Accumulating data suggest that phase change and differentiation in these organisms are controlled by oxylipins, including prostaglandins and lipoxygenase products. The precise role of pathogen-derived eicosanoids in pathogenesis remains to be determined, but the potential link between pathogen eicosanoids and the development of TH2 responses in the host is intriguing. Mammalian prostaglandins and leukotrienes have been studied extensively, and these molecules can modulate Th1 versus Th2 immune responses, chemokine production, phagocytosis, lymphocyte proliferation, and leukocyte chemotaxis. Thus, eicosanoids and oxylipins (host or microbe) may be mediators of a direct host-pathogen “cross-talk” that promotes chronic infection and hypersensitivity disease, common features of infection by eukaryotic pathogens.
Từ khóa
Tài liệu tham khảo
Aliberti, J., and A. Sher. 2001. Positive and negative regulation of pathogen induced dendritic cell function by G-protein coupled receptors. Mol. Immunol.38:891-893.
Bailie, M. B., T. J. Standiford, L. L. Laichalk, M. J. Coffey, R. Strieter, and M. Peters-Golden. 1996. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumoniae in association with decreased alveolar macrophage phagocytic and bactericidal activities. J. Immunol.157:5221-5224.
Reference deleted.
Bavaresco, L., C. Fregoni, E. Cantu, and M. Trevisan. 1999. Stilbene compounds: from the grapevine to wine. Drugs Exp. Clin. Res.25:57-63.
Betz, M., and B. S. Fox. 1991. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol.146:108-113.
Botha, A., J. Kock, and S. Nigam. 1998. The production of eicosanoid precursors by mucoralean fungi. Adv. Exp. Med. Biol.433:227-229.
Coetzee, D., J. Kock, A. Botha, M. van Dyk, E. Smit, P. Botes, and O. Augustyn. 1991. Yeast eicosanoids III. The distribution of arachidonic acid metabolites in the life-cycle of Dipodascopsis uninucleata. Syst. Appl. Microbiol.15:311-318.
Djurkovic-Djakovic, O. 1998. Toxoplasmosis and immunosuppression. Srp. Arkh. Tselok. Lek.126:197-203.
Farrell, J. P., and C. E. Kirkpatrick. 1987. Experimental cutaneous leishmaniasis. II. A possible role for prostaglandins in exacerbation of disease in Leishmania major-infected BALB/c mice. J. Immunol.138:902-907.
Fierer, J., J. A. Salmon, and B. A. Askonas. 1984. African trypanosomiasis alters prostaglandin production by murine peritoneal macrophages. Clin. Exp. Immunol.58:548-556.
Ford-Hutchinson, A. W. 1990. Leukotriene B4 in inflammation. Crit. Rev. Immunol.10:1-12.
Gasperini, S., L. Crepaldi, F. Calzetti, L. Gatto, C. Berlato, F. Bazzoni, A. Yoshimura, and M. A. Cassatella. 2002. Interleukin-10 and cAMP-elevating agents cooperate to induce suppressor of cytokine signaling-3 via a protein kinase A-independent signal. Eur. Cytokine Netw.13:47-53.
Herman R. P. 1998. Oxylipin production and action in fungi and related organisms p. 115-132. In A. F. Rowley H. Kuhn and T. Schewe (ed.) Eicosanoids and related compounds in plants and animals. Princeton Unversity Press Princeton N.J.
Jonsson E. W. and S. Dahlen. 1999. The role of eicosanoids in inflammation and allergy p. 233-272. In F. Marks and G. Furstenberger (ed.) Prostaglandins leukotrienes and other eicosanoids. Wiley-VCH Weinheim Germany.
Kock, J., D. Coetzee, M. van Dyk, M. Truscott, P. Cloete, V. van Wyk, and O. Augustyn. 1991. Evidence for pharmacologically active prostaglandins in yeasts. S. Afr. J. Sci.87:73-76.
Kwon-Chung K. J. 1992. Medical mycology. Lea & Febiger Philadelphia Pa.
Lodewyk, J., J. Kock, P. Venter, A. Botha, D. Coetzee, P. Botes, and S. Nigam. 1998. The production of biologically active eicosanoids by yeasts. Adv. Exp. Med. Biol.433:217-219.
Mandell G. L. J. E. Bennett and R. Dolin (ed.). 1995. Mandell Douglas and Bennett's principles and practice of infectious diseases 4th ed. Churchill Livingstone New York N.Y.
Marks F. 1999. Arachidonic acid and companions: an abundant source of biological signals p. 1-46. In F. Marks and G. Furstenberger (ed.) Prostaglandins leukotrienes and other eicosanoids. Wiley-VCH Weinheim Germany.
Meyer, F., H. Meyer, and E. Bueding. 1970. Lipid Metabolism in the parasitic and free-living worms Schistosoma mansoni and Dugesia dorotocephala. Biochim. Biophys. Acta210:256-266.
Pearce, E. J., and A. J. Macdonald. 2002. The immunobiology of schistosomiasis. Nature2:499-511.
Peters-Golden, M. 1997. Lipid mediator synthesis by lung macrophages. Lung Biol. Health Dis.102:151-182.
Raible, D. G., E. S. Schulman, J. DiMuzio, R. Cardillo, and T. J. Post. 1992. Mast cell mediators prostaglandin-D2 and histamine activate human eosinophils. J. Immunol.148:3536-3542.
Rowley A. F. H. Kuhn and T. Schewe. 1998. Enzymes and factors involved in the biosynthesis of eicosanoids. Princeton University Press Princeton N.J.
Schewe T. 1998. Basic function of lipoxygenases and their products in higher plants p. 133-150. In A. F. Rowley H. Kuhn and T. Schewe (ed.) Eicosanoids and related compounds in plants and animals. Princeton University Press Princeton N.J.
Snijdewint, F. G., P. Kalinski, E. A. Wierenga, J. D. Bos, and M. L. Kapsenberg. 1993. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J. Immunol.150:5321-5329.
Stanley D. W. and J. S. Miller. 1998. Eicosanoids in animal reproduction: what can we learn from invertebrates? p. 183-196. In A. F. Rowley H. Kuhn and T. Schewe (ed.) Eicosanoids and related compounds in plants and animals. Princeton University Press Princeton N.J.
Vane, J. R., and R. M. Botting. 1998. Mechanism of action of antiinflammatory cells. Lung Biol. Health Dis.114:1-24.
Warburg, O., and W. Christian. 1933. Über das Gelbe Ferment und Seine Wirkungen. Biochem. Z.266:377-411.