Production and preservation of resins – past and present

Biological Reviews - Tập 93 Số 3 - Trang 1684-1714 - 2018
Leyla J. Seyfullah1, Christina Beimforde1, Jacopo Dal Corso2, Vincent Perrichot3, Jouko Rikkinen4,5, Alexander R. Schmidt1
1Department of Geobiology University of Göttingen 37077 Göttingen Germany
2Hanse-Wissenschaftskolleg, Institute for Advanced Study, 27753 Delmenhorst, Germany
3Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
4Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
5Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland

Tóm tắt

ABSTRACTAmber is fossilised plant resin. It can be used to provide insights into the terrestrial conditions at the time the original resin was exuded. Amber research thus can inform many aspects of palaeontology, from the recovery and description of enclosed fossil organisms (biological inclusions) to attempts at reconstruction of past climates and environments. Here we focus on the resin itself, the conditions under which it may have been exuded, and its potential path to fossilisation, rather than on enclosed fossils. It is noteworthy that not all plants produce resin, and that not all resins can (nor do) become amber. Given the recent upsurge in the number of amber deposits described, it is time to re‐examine ambers from a botanical perspective. Here we summarise the state of knowledge about resin production in modern ecosystems, and review the biological and ecological aspects of resin production in plants. We also present new observations on conifer‐derived resin exudation, with a particular focus on araucarian conifer trees. We suggest that besides disease, insect attacks and traumatic wounding from fires and storms, other factors such as tree architecture and local soil conditions are significant in creating and preserving resin outpourings. We also examine the transformation of resin into amber (maturation), focusing on geological aspects of amber deposit formation and preservation. We present new evidence that expands previous understanding of amber deposit formation. Specific geological conditions such as anoxic burial are essential in the creation of amber from resin deposits. We show that in the past, the production of large amounts of resin could have been linked to global climate changes and environmental disruption. We then highlight where the gaps in our knowledge still remain and potential future research directions.

Từ khóa


Tài liệu tham khảo

10.1666/0022-3360(2000)074<0158:ANFRWB>2.0.CO;2

10.1016/0146-6380(94)90155-4

10.1016/S0146-6380(96)00137-4

10.1016/0146-6380(93)90111-N

10.1021/bk-1995-0617.pr001

10.1016/0146-6380(92)90051-X

Anonymous, 1921, Development of Kauri gum industry in New Zealand, Journal of the Royal Society of Arts, 69, 299

10.1073/pnas.0605801103

10.1016/j.palaeo.2012.10.023

10.11646/zootaxa.2870.1.3

10.1111/j.1558-5646.1993.tb02170.x

10.1098/rspb.1997.0067

10.1016/j.crpv.2006.10.004

Azar D., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 271

10.1144/SP334.10

10.1163/1876312X-45032122

Beauchamp T. Dick M. A.&Bellgard S.(2011).Preliminary survey forPhytophthorataxonAgathis. Kauri Dieback Long‐term Management Programme Report. Auckland.

10.1668/0003-1569(2001)041[0865:IBCAMD]2.0.CO;2

Beever R. E., 2009, Proceedings of the Fourth Meeting of IUFRO Working Party S07.02.09, 74

10.1007/s11829-016-9475-3

10.1038/ngeo871

10.1038/321857a0

10.2110/palo.2007.p07-055r

Boswijk G., 2005, Australia and New Zealand Forest Histories. Araucarian Forests, 19

10.1144/0016-76492008-158

10.1126/science.1177539

Breda A., 2009, The Carnian Pluvial Event in the Tofane area (Cortina d'Ampezzo, Dolomites, Italy), Geo.Alp, 6, 80

10.1126/science.1161833

10.1130/G35983.1

10.1002/pca.868

10.1098/rstb.1991.0066

10.1021/bk-1995-0617.ch005

Conwentz H. W., 1890, Monographie der Baltischen Bernsteinbäume

10.1016/S1367-9120(02)00044-5

10.1016/0031-9422(83)85031-6

Cunningham A., 1987, The existence and photochemical initiation of free radicals in Hymenaea trunk resins, Phytochemistry, 16, 1142

10.1177/0959683609104026

Dal Corso J., 2018, First workshop on the Carnian Pluvial Episode (Late Triassic): a report, Albertiana, 44, 49

10.1016/j.gloplacha.2015.01.013

10.1144/jgs2013-063

10.1130/G32473.1

Dal Corso J., 2013, Physico‐chemical analysis of Albian (Lower Cretaceous) amber from San Just (Spain): implications for palaeoenvironmental and palaeoecological studies, Geologica Acta, 11, 359

10.1016/j.gca.2016.11.025

10.1016/j.crpv.2006.09.003

10.1093/jxb/29.1.89

DePalma R., 2010, Preliminary notes on the first recorded amber insects from the Hell Creek Formation, The Journal of Paleontological Sciences

Dunlop J. A., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 57

10.1016/j.coal.2010.09.006

10.1016/j.revpalbo.2011.05.002

10.1038/s41598-017-09385-w

10.1130/G34975.1

Edelin C., 1986, L'Arbre: compte‐rendu du Colloque international L'Arbre. Naturalia Monspeliensia, 139

10.1086/672369

10.1086/285258

10.1098/rstb.2009.0227

10.1130/G22967A.1

Gianolla P., 1998, Upper Triassic amber in the Dolomites (Northern Italy). A paleoclimatic indicator?, Rivista Italiana di Paleontologia e Stratigrafia, 104, 381

10.1306/052002720871

10.1111/j.1502-3931.2002.tb00090.x

Gradstein F. M., 2012, The Geologic Time Scale 2012

10.1130/GES00212.1

10.1021/bk-1995-0617.ch011

Grimaldi D., 1996, Amber: Window to the Past

Grimaldi D., 2005, Evolution of the Insects

Grimaldi D., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 167

Grimaldi D., 2000, Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey, 1

10.1016/0031-9422(89)80202-X

10.1007/978-3-642-81190-6

Hand S., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 69

10.1016/j.orggeochem.2006.06.016

Haywood B. W., 1989, Kauri Gum and the Gumdiggers: A Pictorial History of the Kauri Gum Industry in New Zealand (Pictures from the Past)

10.1016/j.tim.2005.03.010

Henwood A., 1993, Recent plant resins and the taphonomy of organisms in amber: a review, Modern Geology, 19, 35

10.1130/0091-7613(2002)030<0251:TAMEAT>2.0.CO;2

10.1007/978-3-642-72534-0

Hornung T., 2007, The Global Triassic

10.1130/B31493.1

Iturralde‐Vinent M., 2001, Geology of the amber‐bearing deposits of the Greater Antilles, Caribbean Journal of Science, 37, 141

10.1126/science.273.5283.1850

Jarzembowski E. A., 2008, A new chironomid (Insecta: Diptera) from Wealden amber (Lower Cretaceous) of the Isle of Wight (UK), Geologica Acta, 6, 285

Katinas V., 1987, Zum Geheimnis des Bernsteins, 10

10.1098/rspb.2004.2939

10.1016/B978-0-12-417156-5.00005-8

Krumbiegel G., 1994, Bernstein ‐ fossile harze aus aller Welt

Kürschner W. M., 2010, Triassic palynology of central and northwestern Europe: a review of palynofloral diversity patterns and biostratigraphic subdivisions, The Triassic Timescale, 331, 263

Labandeira C. C., 2014, Reading and Writing of the Fossil Record. Preservational Pathways to Exceptional Fossilization, 164

10.1002/gea.3340080206

Langenheim J. H., 1967, Preliminary investigations of Hymenaea courbaril as a resin producer, Journal of the Arnold Arboretum, 48, 203, 10.5962/p.185723

10.1126/science.163.3872.1157

10.1007/BF02059809

10.1021/bk-1995-0617.ch001

Langenheim J. H., 2003, Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany

10.1016/0305-1978(86)90084-0

10.1111/j.1442-9993.2010.02184.x

10.1007/s004420050477

10.1130/0091-7613(1991)019<0273:FEMAIT>2.3.CO;2

10.1098/rspb.2008.0715

10.1016/j.foreco.2006.01.010

10.2307/1934519

10.1093/treephys/2.1-2-3.301

10.5194/bg-10-1943-2013

10.1016/j.jop.2015.08.010

10.1016/j.coal.2009.07.015

10.1016/j.palwor.2016.03.003

10.1007/s12594-009-0098-5

10.1016/j.quascirev.2006.01.031

10.1111/j.1475-4983.2005.00517.x

10.1016/S0031-0182(03)00643-6

10.1126/science.284.5414.616

Matich F. Matich I.&Mataga D.(2011). Mining buried resin (Kauri gum) – an engineering perspective. InProceedings of the 16th Engineering Heritage Australia Conference pp. 1–11. Hobart.

10.1016/j.orggeochem.2017.08.005

10.1146/annurev-earth-040610-133431

McKellar R. C., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 149

10.1098/rspb.2011.0276

McNeill J., 1991, Northland's buried treasure, New Zealand Geographic, 10, 18

10.1016/j.orggeochem.2015.12.010

10.1016/j.palaeo.2015.06.008

10.1016/0016-7037(94)90178-3

10.1130/0016-7606(1985)96<1530:EAFTPC>2.0.CO;2

10.1111/j.1755-6724.2010.00258.x

Nel A., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 137

10.1016/S1251-8050(99)80229-8

Nel A., 2004, The French ambers, a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris Basin, Geologica Acta, 2, 3

10.1016/j.cretres.2016.10.001

10.1007/BF00608894

10.1016/0899-5362(92)90106-M

10.1021/bk-1995-0617.ch002

10.1163/18749836-06021056

10.1021/acs.jnatprod.5b00093

10.1016/S0034-6667(02)00072-6

10.1007/BF02858076

10.1130/0091-7613(2001)029<1047:CIAAOG>2.0.CO;2

Peñalver E., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 236

Penney D., 2010, Biodiversity of Fossils in Amber from the Major World Deposits

Penney D., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 22

Penney D., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 299

10.1371/journal.pone.0073150

10.1016/j.gsf.2015.12.007

10.1016/j.cretres.2015.06.003

Perkovsky E. E., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 116

Perrichot V., 2004, Early Cretaceous amber from south‐western France: insight into the Mesozoic litter fauna, Geologica Acta, 2, 9

Perrichot V., 2016, 7th International Conference on Fossil Insects, Arthropods and Amber

Perrichot V., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 192

10.1371/journal.pone.0047236

10.1080/08912960500284729

10.1016/S1360-1385(99)01401-6

10.2307/3515016

10.1007/BF01923347

10.1515/9781503623545

10.1046/j.1095-8339.2002.00053.x

Poinar G. O., 2001, Lebanese amber

10.1016/j.orggeochem.2011.11.012

10.1016/j.palaeo.2010.03.015

10.1371/journal.pone.0121307

10.1016/B978-0-12-417156-5.00001-0

10.1016/S0040-6031(03)00062-5

10.1007/978-1-4020-9212-1_9

10.1016/j.cretres.2015.12.025

10.1007/0-306-47577-4

10.1016/j.quascirev.2006.01.009

10.4202/app.2009.0100

10.1016/j.palaeo.2006.09.013

10.1016/j.palaeo.2009.11.006

10.2110/palo.2005.p05-68

Ross A., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 208

10.1111/bij.12192

10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2

10.1126/science.1204255

10.1073/pnas.1007407107

10.1111/boj.12365

Sadowski E. M., 2017, Conifers from of the ‘Baltic amber forest’ and their palaeoecological significance, Stapfia, 106, 1

10.3732/ajb.1600390

10.1016/j.annpal.2013.03.001

10.1017/S0016756815000175

10.3140/bull.geosci.2007.04.301

Schlee D., 1978, Bernstein. Bersteine und Bernsteinfossilien, Stuttgarter Beiträge zur Naturkunde Serie C, 8, 1

10.1073/pnas.1208464109

10.1016/j.gr.2017.12.003

10.1073/pnas.1000948107

10.1038/444835a

10.1016/S0031-0182(00)00192-9

10.7717/peerj.1067

10.1371/journal.pone.0111303

10.1130/0091-7613(1989)017<0265:SOCCAE>2.3.CO;2

10.1002/sia.5090

Solórzano Kraemer M. M., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 42

10.1080/08120099.2014.960897

Standke G., 2008, Bitterfelder Bernstein gleich Baltischer Bernstein? – Eine geologische Raum‐ Zeit‐ Betrachtung und genetische Schlussfolgerungen, Exkursionsführer und Veröffentlichungen der Deutschen Gesellschaft für Geowissenschaften, 236, 11

10.1098/rspb.1998.0342

10.1016/j.palaeo.2011.05.050

10.1126/science.1135274

10.1021/bk-1995-0617.ch003

10.1086/657277

10.1007/978-3-642-87734-6_32

Thomas B. R., 1970, Phytochemical Phylogeny, 59

Tomlinson P. B.(2009). Crown structure in Araucariaceae. InAraucariaceae. Proceedings of the 2003 Araucariaceae Symposium. Auckland New Zealand pp.52–67.International Dendrology Society.Auckland.

10.1146/annurev.arplant.52.1.689

10.1016/j.quascirev.2010.08.017

10.1016/0016-7037(94)90459-6

10.1021/bk-1995-0617.ch008

Vávra N., 2009, Amber, fossil resins and copal – contributions to the terminology of fossil plant resins, Denisia, 26, 213

Veillon J. M., 1978, Tropical Trees as Living Systems, 233

Wang B., 2016, 7th International Conference on Fossil Insects, Arthropods and Amber, 56

10.1016/j.cub.2014.05.048

10.1126/science.1058574

10.11646/phytotaxa.205.1.2

Weitschat W., 2002, Atlas of Plants and Animals in Baltic Amber

Weitschat W., 2010, Biodiversity of Fossils in Amber from the Major World Deposits, 80

10.1073/pnas.1001706107

10.1016/S0012-8252(00)00037-4

10.3732/ajb.1300327

10.1016/j.gca.2013.11.033

Willis K. J., 2013, The Evolution of Plants, 10.1093/hesc/9780199292233.001.0001

10.1098/rspb.2009.0806

10.1080/0028825X.2012.724428

Wyse S. V., 2013, Effects of Agathis australis (New Zealand kauri) leaf litter on germination and seedling growth differs among plant species, New Zealand Journal of Ecology, 37, 178

10.1016/j.revpalbo.2006.02.002

10.1038/nature06588

10.1016/j.palaeo.2015.05.033