Production and applications of activated carbons as adsorbents from olive stones

Junaid Saleem1, Usman Bin Shahid1, Mouhammad Hijab1, Hamish R. Mackey1, Gordon McKay1
1Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ko DCK, Mui ELK, Lau KST, McKay G (2004) Production of activated carbons from waste tire—process design and economical analysis. Waste Manag 24:875–888. https://doi.org/10.1016/j.wasman.2004.03.006

Azbar N, Bayram A, Filibeli A et al (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34:209–247. https://doi.org/10.1080/10643380490279932

Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842. doi: https://doi.org/10.1080/10643380801977610

Kushwaha S, Soni H, Ageetha V, Padmaja P (2013) An insight into the production, characterization, and mechanisms of action of low-cost adsorbents for removal of organics from aqueous sSolution. Crit Rev Environ Sci Technol 43:443–549. https://doi.org/10.1080/10643389.2011.604263

Rafatullah M, Ahmad T, Ghazali A et al (2013) Oil palm biomass as a precursor of activated carbons: a review. Crit Rev Environ Sci Technol 43:1117–1161. https://doi.org/10.1080/10934529.2011.627039

Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon NY 34:471–479. https://doi.org/10.1016/0008-6223(95)00204-9

Asada C, Nakamura Y, Kobayashi F (2005) Waste reduction system for production of useful materials from un-utilized bamboo using steam explosion followed by various conversion methods. Biochem Eng J 23:131–137. https://doi.org/10.1016/j.bej.2004.11.004

Choy KKH, Barford JP, McKay G (2005) Production of activated carbon from bamboo scaffolding waste—process design, evaluation and sensitivity analysis. Chem Eng J 109:147–165. https://doi.org/10.1016/j.cej.2005.02.030

Ohe K, Nagae Y, Nakamura S, Baba Y (2003) Removal of nitrate anion by carbonaceous materials prepared from bamboo and coconut shell. J Chem Eng Japan 36:511–515. https://doi.org/10.1252/jcej.36.511

Wu F, Tseng R, Juang R (1999) Preparation of activated carbons from bamboo and their adsorption abilities for dyes and phenol. J Environ Sci Heal Part A 34:1753–1775. https://doi.org/10.1080/10934529909376927

da Silva Lacerda V, López-Sotelo JB, Correa-Guimarães A et al (2015) Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J Environ Manag 155:67–76. https://doi.org/10.1016/j.jenvman.2015.03.007

Mackay DM, Roberts PV (1982a) The influence of pyrolysis conditions on yield and microporosity of lignocellulosic chars. Carbon NY 20:95–104. https://doi.org/10.1016/0008-6223(82)90413-4

Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep Purif 7:241–245. https://doi.org/10.1016/0950-4214(93)80024-Q

Rodríguez-Reinoso F, Molina-Sabio M (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon NY 30:1111–1118. https://doi.org/10.1016/0008-6223(92)90143-K

Fierro V, Torné-Fernández V, Montané D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater 111:276–284. https://doi.org/10.1016/j.micromeso.2007.08.002

Obregón-Valencia D, del Sun-Kou RM (2014) Comparative cadmium adsorption study on activated carbon prepared from aguaje (Mauritia flexuosa) and olive fruit stones (Olea europaea L.). J Environ Chem Eng 2:2280–2288. https://doi.org/10.1016/j.jece.2014.10.004

Belaid KD, Kacha S, Kameche M, Derriche Z (2013) Adsorption kinetics of some textile dyes onto granular activated carbon. J Environ Chem Eng 1:496–503. https://doi.org/10.1016/j.jece.2013.05.003

Hadi P, Sharma SK, McKay G (2015a) Removal of dyes from effluents using biowaste-derived adsorbents. In: Green chemistry for dyes removal from wastewater. Wiley, Hoboken, pp 139–201

Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

Ho YS, McKay G (1998a) Kinetic model for lead(II) sorption on to peat. Adsorpt Sci Technol 16:243–255. https://doi.org/10.1177/026361749801600401

Poots VJP, McKay G, Healy JJ (1976a) The removal of acid dye from effluent using natural adsorbents—I peat. Water Res 10:1061–1066. https://doi.org/10.1016/0043-1354(76)90036-1

Arriagada R, García R, Reyes P (1994) Steam and carbon dioxide activation of Eucalyptus globulus charcoal. J Chem Technol Biotechnol 60:427–433. https://doi.org/10.1002/jctb.280600414

Poots VJP, McKay G, Healy JJ (1976b) The removal of acid dye from effluent using natural adsorbents—II wood. Water Res 10:1067–1070

Garg S, Das P (2018) High-grade activated carbon from pyrolytic biochar of Jatropha and Karanja oil seed cakes—Indian biodiesel industry wastes. Biomass Convers Biorefinery 8:545–561. https://doi.org/10.1007/s13399-018-0308-8

Payne KB, Abdel-Fattah T (2004) Adsorption of divalent lead ions by zeolites and activated carbon: effects of pH, temperature, and ionic strength. J Environ Sci Health A 39(9):2275–2291. https://doi.org/10.1081/ESE-200026265

McKay G, Ramprasad G, Mowli P (1987) Desorption and regeneration of dye colours from low-cost materials. Water Res 21:375–377. https://doi.org/10.1016/0043-1354(87)90218-1

Girgis BS, Khalil LB, Tawfik TAM (1994) Activated carbon from sugar cane bagasse by carbonization in the presence of inorganic acids. J Chem Technol Biotechnol 61:87–92. https://doi.org/10.1002/jctb.280610113

McKay G, El-Geundi M, Nassar MM (1997) Adsorption model for the removal of acid dyes from effluent by bagasse pith using a simplified isotherm. Adsorpt Sci Technol 15:737–752. https://doi.org/10.1177/026361749701501002

Banat F, Al-Asheh S, Al-Ahmad R, Bni-Khalid F (2007) Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal. Bioresour Technol 98:3017–3025. https://doi.org/10.1016/j.biortech.2006.10.023

González JF, González-García CM, Ramiro A et al (2004) Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy 27:145–154. https://doi.org/10.1016/j.biombioe.2004.01.004

Ioannou Z, Simitzis J (2013) Adsorption of methylene blue dye onto activated carbons based on agricultural by-products: equilibrium and kinetic studies. Water Sci Technol 67:1688. https://doi.org/10.2166/wst.2013.040

Ghanbari R, Anwar F, Alkharfy KM, et al (2012) Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—a review

Guinda A (2006) Use of solid residue from the olive industry. Grasas Aceites 57:107–115. https://doi.org/10.3989/gya.2006.v57.i1.26

Pattara C, Cappelletti GM, Cichelli A (2010) Recovery and use of olive stones: commodity, environmental and economic assessment. Renew Sust Energ Rev 14:1484–1489. https://doi.org/10.1016/j.rser.2010.01.018

Rodríguez G, Lama A, Rodríguez R et al (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99:5261–5269. https://doi.org/10.1016/j.biortech.2007.11.027

Romero-García JM, Niño L, Martínez-Patiño C et al (2014) Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 159:421–432. https://doi.org/10.1016/j.biortech.2014.03.062

Ruiz E, Romero-García JM, Romero I et al (2017) Olive-derived biomass as a source of energy and chemicals. Biofuels Bioprod Biorefin 11:1077–1094. https://doi.org/10.1002/bbb.1812

Aguayo-Villarreal IA, Bonilla-Petriciolet A, Muñiz-Valencia R (2017) Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J Mol Liq 230:686–695. https://doi.org/10.1016/j.molliq.2017.01.039

McKay G (1979) Waste color removal from textile effluents. Am Dyestuff Rept 68(4):29–35

To M-H, Hadi P, Hui C-W et al (2017) Mechanistic study of atenolol, acebutolol and carbamazepine adsorption on waste biomass derived activated carbon. J Mol Liq 241:386–398. https://doi.org/10.1016/j.molliq.2017.05.037

Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

Lagergren S (1898) Zur theorie der sogenannten adsorption gelo ̈ ster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24(4):1–39

Lopes ECN, Dos Anjos FSC, Vieira EFS, Cestari AR (2003) An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes. J Colloid Interface Sci 263(2):542–547

Wu F-C, Tseng RL, Juang RS (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150(2–3):366–373

Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55(1):77–93

Abe I, Fukuhara T, Iwasaki S et al (2001) Development of a high density carbonaceous adsorbent from compressed wood. Carbon NY 39:1485–1490. https://doi.org/10.1016/S0008-6223(00)00273-6

Lavanya C, Balakrishna RG, Soontarapa K, Padaki MS (2019) Fouling resistant functional blend membrane for removal of organic matter and heavy metal ions. J Environ Manag 232:372–381. https://doi.org/10.1016/j.jenvman.2018.11.093

Hosono M, Arai H, Aizawa M et al (1993) Decoloration and degradation of azo dye in aqueous solution supersaturated with oxygen by irradiation of high-energy electron beams. Appl Radiat Isot 44:1199–1203. https://doi.org/10.1016/0969-8043(93)90064-H

Bayramoglu M, Eyvaz M, Kobya M (2007) Treatment of the textile wastewater by electrocoagulation. Chem Eng J 128:155–161. https://doi.org/10.1016/j.cej.2006.10.008

Slokar YM, Majcen Le Marechal A (1998) Methods of decoloration of textile wastewaters. Dyes Pigments 37:335–356. https://doi.org/10.1016/S0143-7208(97)00075-2

Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manag 219:189–207. https://doi.org/10.1016/j.jenvman.2018.04.103

Sarasa J, Roche M, Ormad M et al (1998) Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Res 32:2721–2727. https://doi.org/10.1016/S0043-1354(98)00030-X

Chandra TC, Mirna MM, Sudaryanto Y, Ismadji S (2007) Adsorption of basic dye onto activated carbon prepared from durian shell: studies of adsorption equilibrium and kinetics. Chem Eng J 127:121–129. https://doi.org/10.1016/j.cej.2006.09.011

Guo J, Lua AC (2003) Adsorption of sulphur dioxide onto activated carbon prepared from oil-palm shells with and without pre-impregnation. Sep Purif Technol 30:265–273. https://doi.org/10.1016/S1383-5866(02)00166-1

Mackay DM, Roberts PV (1982b) The dependence of char and carbon yield on lignocellulosic precursor composition. Carbon NY 20:87–94. https://doi.org/10.1016/0008-6223(82)90412-2

Hu X, Lei L, Chen G, Yue PL (2001) On the degradability of printing and dyeing wastewater by wet air oxidation. Water Res 35:2078–2080. https://doi.org/10.1016/S0043-1354(00)00481-4

Hislop KA, Bolton JR (1999) The photochemical generation of hydroxyl radicals in the UV−vis/ferrioxalate/H2O2 system. Environ Sci Technol 33:3119–3126. https://doi.org/10.1021/es9810134

Jeong J, Yoon J (2005) pH effect on OH radical production in photo/ferrioxalate system. Water Res 39:2893–2900. https://doi.org/10.1016/j.watres.2005.05.014

Sillanpää M, Ncibi MC, Matilainen A, Vepsäläinen M (2018) Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review. Chemosphere 190:54–71. https://doi.org/10.1016/j.chemosphere.2017.09.113

Chen Q, Yao Y, Li X et al (2018) Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J Water Process Eng 26:289–300. https://doi.org/10.1016/j.jwpe.2018.11.003

Vaghela SS, Jethva AD, Mehta BB et al (2005) Laboratory studies of electrochemical treatment of industrial azo dye effluent. Environ Sci Technol 39:2848–2855. https://doi.org/10.1021/es035370c

Bell J, Buckley CA (2003) Treatment of a textile dye in the anaerobic baffled reactor. Water SA. https://doi.org/10.4314/wsa.v29i2.4847

Bhatia V, Dhir A, Ray AK (2018) Integration of photocatalytic and biological processes for treatment of pharmaceutical effluent. J Photochem Photobiol A Chem 364:322–327. https://doi.org/10.1016/j.jphotochem.2018.06.027

Jacob JM, Karthik C, Saratale RG et al (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70. https://doi.org/10.1016/j.jenvman.2018.03.077

Suresh A, Grygolowicz-Pawlak E, Pathak S et al (2018) Understanding and optimization of the flocculation process in biological wastewater treatment processes: a review. Chemosphere 210:401–416. https://doi.org/10.1016/j.chemosphere.2018.07.021

Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 58(3):217–227. https://doi.org/10.1016/S0960-8524(96)00113-7

Attia AA, Girgis BS, Khedr SA (2003) Capacity of activated carbon derived from pistachio shells by H3PO4 in the removal of dyes and phenolics. J Chem Technol Biotechnol 78:611–619. https://doi.org/10.1002/jctb.743

Chen B, Hui CW, McKay G (2001) Film-pore diffusion modeling and contact time optimization for the adsorption of dyestuffs on pith. Chem Eng J 84:77–94. https://doi.org/10.1016/S1385-8947(01)00193-0

Mckay G (2007) The adsorption of dyestuffs from aqueous solutions using activated carbon. III. Intraparticle diffusion processes. J Chem Technol Biotechnol Chem Technol 33:196–204. https://doi.org/10.1002/jctb.504330406

Paul B, Dynes JJ, Chang W (2017) Modified zeolite adsorbents for the remediation of potash brine-impacted groundwater: built-in dual functions for desalination and pH neutralization. Desalination 419:141–151. https://doi.org/10.1016/j.desal.2017.06.009

Lam KF, Yeung KL, McKay G (2006) An investigation of gold adsorption from a binary mixture with selective mesoporous silica adsorbents. J Phys Chem B 110:2187–2194. https://doi.org/10.1021/jp055577n

Millar GJ, Couperthwaite SJ, Dawes LA et al (2017) Activated alumina for the removal of fluoride ions from high alkalinity groundwater: new insights from equilibrium and column studies with multicomponent solutions. Sep Purif Technol 187:14–24. https://doi.org/10.1016/j.seppur.2017.06.042

Chen S-B, Zhu Y-G, Ma Y-B, McKay G (2006) Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environ Pollut 139:433–439. https://doi.org/10.1016/j.envpol.2005.06.007

Choy KKH, McKay G (2005) Sorption of cadmium, copper, and zinc ions onto bone char using crank diffusion model. Chemosphere 60:1141–1150. https://doi.org/10.1016/j.chemosphere.2004.12.041

Choy KK, Ko DC, Cheung CW et al (2004) Film and intraparticle mass transfer during the adsorption of metal ions onto bone char. J Colloid Interface Sci 271:284–295. https://doi.org/10.1016/j.jcis.2003.12.015

Ko DCK, Porter JF, McKay G (2005) Application of the concentration-dependent surface diffusion model on the multicomponent fixed-bed adsorption systems. Chem Eng Sci 60:5472–5479. https://doi.org/10.1016/j.ces.2005.04.048

Baldikova E, Mullerova S, Prochazkova J et al (2018) Use of waste Japonochytrium sp. biomass after lipid extraction as an efficient adsorbent for triphenylmethane dye applied in aquaculture. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-018-0362-2

Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

Lou Z, Zhang W, Hu X, Zhang H (2017) Synthesis of a novel functional group-bridged magnetized bentonite adsorbent: characterization, kinetics, isotherm, thermodynamics and regeneration. Chin J Chem Eng 25:587–594. https://doi.org/10.1016/j.cjche.2016.10.010

Allen SJ, McKay G, Khader KYH (2007) Equilibrium adsorption isotherms for basic dyes onto lignite. J Chem Technol Biotechnol 45:291–302. https://doi.org/10.1002/jctb.280450406

Islam MA, Ahmed MJ, Khanday WA et al (2017) Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Environ Manag 203:237–244. https://doi.org/10.1016/j.jenvman.2017.07.029

Saleem J, Mckay G (2016) Waste HDPE bottles for selective oil sorption. https://doi.org/10.1002/apj

Saleem J, Ning C, Barford J, McKay G (2015) Combating oil spill problem using plastic waste. Waste Manag 44:34–38. https://doi.org/10.1016/j.wasman.2015.06.003

Saleem J, Adil Riaz M, Gordon M (2018) Oil sorbents from plastic wastes and polymers: a review. J Hazard Mater 341:424–437. https://doi.org/10.1016/j.jhazmat.2017.07.072

Cheung W, Ng J, Mckay G (2003) Kinetic analysis of the sorption of copper(II) ions on chitosan. J Chem Technol Biotechnol 78:562–571. https://doi.org/10.1002/jctb.836

McKay G, Blair HS, Gardner J (1983) The adsorption of dyes in chitin. III. Intraparticle diffusion processes. J Appl Polym Sci 28:1767–1778. https://doi.org/10.1002/app.1983.070280519

Al-Asheh S, Banat F, Al-Lagtah N (2004) Separation of ethanol–water mixtures using molecular sieves and biobased adsorbents. Chem Eng Res Des 82:855–864. https://doi.org/10.1205/0263876041596779

Gui X, Li H, Wang K et al (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798–4804. https://doi.org/10.1016/j.actamat.2011.04.022

Kyzas G, Travlou N, Kalogirou O, Deliyanni E (2013) Magnetic graphene oxide: effect of preparation route on reactive black 5 adsorption. Materials (Basel) 6:1360–1376. https://doi.org/10.3390/ma6041360

Lee VKC, Porter JF, McKay G (2001) Modified design model for the adsorption of dye onto peat. Food Bioprod Process 79:21–26. https://doi.org/10.1205/09603080151123326

Parada MS, Fernández K (2017) Modelling the hydrophilic extraction of the bark of Eucalyptus nitens and Eucalyptus globulus: adsorption isotherm and thermodynamic studies. Ind Crop Prod 109:558–569. https://doi.org/10.1016/j.indcrop.2017.08.059

Ho YS, McKay G (1998b) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124. https://doi.org/10.1016/S0923-0467(98)00076-1

Foo KY, Hameed BH (2012) Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresour Technol 111:425–432. https://doi.org/10.1016/j.biortech.2012.01.141

Wu F-C, Tseng R-L (2006) Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water. J Colloid Interface Sci 294:21–30. https://doi.org/10.1016/j.jcis.2005.06.084

Ahmada A, Loh M, Aziz J (2007) Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes Pigments 75:263–272. https://doi.org/10.1016/j.dyepig.2006.05.034

El-Sheikh AH, Alzawahreh AM, Sweileh JA (2011) Preparation of an efficient sorbent by washing then pyrolysis of olive wood for simultaneous solid phase extraction of chloro-phenols and nitro-phenols from water. Talanta 85:1034–1042. https://doi.org/10.1016/j.talanta.2011.05.016

Sahu JN, Acharya J, Meikap BC (2010) Optimization of production conditions for activated carbons from tamarind wood by zinc chloride using response surface methodology. Bioresour Technol 101:1974–1982. https://doi.org/10.1016/j.biortech.2009.10.031

Chan LS, Cheung WH, Allen SJ, McKay G (2012a) Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chin J Chem Eng 20:535–542. https://doi.org/10.1016/S1004-9541(11)60216-4

Ip AWM, Barford JP, McKay G (2008) Production and comparison of high surface area bamboo derived active carbons. Bioresour Technol 99:8909–8916. https://doi.org/10.1016/j.biortech.2008.04.076

Wang L (2012) Application of activated carbon derived from ‘waste’ bamboo culms for the adsorption of azo disperse dye: kinetic, equilibrium and thermodynamic studies. J Environ Manag 102:79–87. https://doi.org/10.1016/j.jenvman.2012.02.019

Angın D, Altintig E, Köse TE (2013) Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 148:542–549. https://doi.org/10.1016/j.biortech.2013.08.164

McKay G, Yee TF, Nassar MM, Magdy Y (1998) Fixed-bed adsorption of dyes on bagasse pith. Adsorpt Sci Technol 16:623–639. https://doi.org/10.1177/026361749801600804

Valix M, Cheung WH, McKay G (2004) Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere 56:493–501. https://doi.org/10.1016/j.chemosphere.2004.04.004

Khalid M, Joly G, Renaud A, Magnoux P (2004) Removal of phenol from water by adsorption using zeolites. Ind Eng Chem Res 43(17):5275–5280. https://doi.org/10.1021/ie0400447

Guo Y, Rockstraw DA (2007) Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous Mesoporous Mater 100:12–19. https://doi.org/10.1016/j.micromeso.2006.10.006

Balci S, Dohgu T, Yücel H (1994) Characterization of activated carbon produced from almond shell and hazelnut shell. J Chem Technol Biotechnol 60:419–426. https://doi.org/10.1002/jctb.280600413

Banerjee M, Bar N, Basu RK, Das SK (2017) Comparative study of adsorptive removal of Cr(VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN. Environ Sci Pollut Res 24:10604–10620. https://doi.org/10.1007/s11356-017-8582-8

Franco DSP, Cunha JM, Dortzbacher GF, Dotto GL (2017) Adsorption of Co(II) from aqueous solutions onto rice husk modified by ultrasound assisted and supercritical technologies. Process Saf Environ Prot 109:55–62. https://doi.org/10.1016/j.psep.2017.03.029

Lin L, Zhai S-R, Xiao Z-Y et al (2013) Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresour Technol 136:437–443. https://doi.org/10.1016/j.biortech.2013.03.048

Samarghandi MR, Hadi M, McKay G (2014) Breakthrough curve analysis for fixed-bed adsorption of azo dyes using novel pine cone-derived active carbon. Adsorpt Sci Technol 32:791–806. https://doi.org/10.1260/0263-6174.32.10.791

de Macedo JS, da Costa Júnior NB, Almeida LE et al (2006) Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust. J Colloid Interface Sci 298:515–522. https://doi.org/10.1016/j.jcis.2006.01.021

Tsai W-T, Jiang T-J (2018) Mesoporous activated carbon produced from coconut shell using a single-step physical activation process. Biomass Convers Biorefinery 8:711–718. https://doi.org/10.1007/s13399-018-0322-x

Tan IAW, Hameed BH, Ahmad AL (2007) Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem Eng J 127:111–119. https://doi.org/10.1016/j.cej.2006.09.010

Girgis BS, Yunis SS, Soliman AM (2002) Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Mater Lett 57:164–172. https://doi.org/10.1016/S0167-577X(02)00724-3

Tahir N, Bhatti HN, Iqbal M, Noreen S (2017) Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int J Biol Macromol 94:210–220. https://doi.org/10.1016/j.ijbiomac.2016.10.013

Kwiatkowski M, Broniek E (2017) An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids Surf A Physicochem Eng Asp 529:443–453. https://doi.org/10.1016/j.colsurfa.2017.06.028

Alimohammadi M, Saeedi Z, Akbarpour B et al (2017) Adsorptive removal of arsenic and mercury from aqueous solutions by eucalyptus leaves. Water Air Soil Pollut 228:429. https://doi.org/10.1007/s11270-017-3607-y

Biswas B, Pandey N, Bisht Y et al (2017) Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol 237:57–63. https://doi.org/10.1016/j.biortech.2017.02.046

Wongcharee S, Aravinthan V, Erdei L, Sanongraj W (2017) Use of macadamia nut shell residues as magnetic nanosorbents. Int Biodeterior Biodegradation 124:276–287. https://doi.org/10.1016/j.ibiod.2017.04.004

Fadhil AB (2017) Evaluation of apricot (Prunus armeniaca L.) seed kernel as a potential feedstock for the production of liquid bio-fuels and activated carbons. Energy Convers Manag 133:307–317. https://doi.org/10.1016/j.enconman.2016.12.014

Merzougui Z, Azoudj Y, Bouchemel N, Addoun F (2011) Effect of activation method on the pore structure of activated carbon from date pits application to the treatment of water. Desalin Water Treat 29:236–240. https://doi.org/10.5004/dwt.2011.1420

Aygün A, Yenisoy-Karakaş S, Duman I (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater 66:189–195. https://doi.org/10.1016/j.micromeso.2003.08.028

Marsh H, Iley M, Berger J, Siemieniewska T (1975) The adsorptive properties of activated plum stone chars. Carbon NY 13:103–109. https://doi.org/10.1016/0008-6223(75)90266-3

Parlayıcı Ş, Pehlivan E (2017) Removal of metals by Fe3O4 loaded activated carbon prepared from plum stone (Prunus nigra): kinetics and modelling study. Powder Technol 317:23–30. https://doi.org/10.1016/j.powtec.2017.04.021

Chen CY, Garnica JI, Rodriguez MC, Duke, Costa RFD, Dicks AL, da JCD C (2007) Nafion/polyaniline/silica composite membranas for direct methanol fuel application. J Power Sources 166:324

Martins AF, de Cardoso AL, Stahl JA, Diniz J (2007) Low temperature conversion of rice husks, eucalyptus sawdust and peach stones for the production of carbon-like adsorbent. Bioresour Technol 98:1095–1100. https://doi.org/10.1016/j.biortech.2006.04.024

Molina-Sabio M, Caturla F, Rodriguez-Reinoso F (1995) Influence of the atmosphere used in the carbonization of phosphoric acid impregnated peach stones. Carbon NY 33:1180–1182. https://doi.org/10.1016/0008-6223(95)91248-6

Gergova K, Eser S (1996) Effects of activation method on the pore structure of activated carbons from apricot stones. Carbon NY 34:879–888. https://doi.org/10.1016/0008-6223(96)00028-0

Lussier MG, Shull JC, Miller DJ (1994) Activated carbon from cherry stones. Carbon NY 32:1493–1498. https://doi.org/10.1016/0008-6223(94)90144-9

Philip CA, Girgis BS (1996) Adsorption characteristics of microporous carbons from apricot stones activated by phosphoric acid. J Chem Technol Biotechnol 67:248–254. https://doi.org/10.1002/(SICI)1097-4660(199611)67:3<248::AID-JCTB557>3.0.CO;2-1

Uǧurlu M, Gürses A, Açikyildiz M (2008) Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous Mesoporous Mater 111:228–235. https://doi.org/10.1016/j.micromeso.2007.07.034

Aboua KN, Yobouet YA, Yao KB et al (2015) Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. J Environ Manag 156:10–14. https://doi.org/10.1016/j.jenvman.2015.03.006

Ojedokun AT, Bello OS (2017) Liquid phase adsorption of Congo red dye on functionalized corn cobs. J Dispers Sci Technol 38:1285–1294. https://doi.org/10.1080/01932691.2016.1234384

Tsai WT, Chang CY, Lee SL (1997) Preparation and characterization of activated carbons from corn cob. Carbon NY 35:1198–1200. https://doi.org/10.1016/S0008-6223(97)84654-4

Wu F-C, Wu P-H, Tseng R-L, Juang R-S (2011) Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol. J Environ Manag 92:708–713. https://doi.org/10.1016/j.jenvman.2010.10.003

Chan OS, Cheung WH, McKay G (2012b) Single and multicomponent acid dye adsorption equilibrium studies on tyre demineralised activated carbon. Chem Eng J 191:162–170. https://doi.org/10.1016/j.cej.2012.02.089

Mui ELK, Cheung WH, Valix M, McKay G (2010) Mesoporous activated carbon from waste tyre rubber for dye removal from effluents. Microporous Mesoporous Mater 130(1–3):287–294

Wu B, Zhou MH (2009) Recycling of waste tyre rubber into oil absorbent. Waste Manag 29:355–359. https://doi.org/10.1016/j.wasman.2008.03.002

Bazargan A, Hui CW, McKay G (2013) Porous carbons from plastic waste in advances in polymer science. Springer, Berlin, pp 1–25

Kartel MT, Sych MV, Tsyba MM, Strelko VV (2006) Preparation of porous carbons by chemical activation of polyethyleneterephthalate. Carbon 44:1013–1024

Hadi P, Gao P, Barford JP, McKay G (2013) Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. J Hazard Mater 252–253:166–170. https://doi.org/10.1016/j.jhazmat.2013.02.037

Hadi P, Barford J, McKay G (2014a) Selective toxic metal uptake using an e-waste-based novel sorbent-single, binary and ternary systems. J Environ Chem Eng 2:332–339. https://doi.org/10.1016/j.jece.2014.01.004

Hadi P, Ning C, Ouyang W et al (2014b) Conversion of an aluminosilicate-based waste material to high-value efficient adsorbent. Chem Eng J 256:415–420. https://doi.org/10.1016/j.cej.2014.07.017

Hadi P, Xu M, Lin CSK et al (2015b) Waste printed circuit board recycling techniques and product utilization. J Hazard Mater 283:234–243. https://doi.org/10.1016/j.jhazmat.2014.09.032

Wong C-W, Barford JP, Chen G, McKay G (2014) Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. J Environ Chem Eng 2:698–707. https://doi.org/10.1016/j.jece.2013.11.010

Xu M, Hadi P, Chen G, McKay G (2014) Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J Hazard Mater 273:118–123. https://doi.org/10.1016/j.jhazmat.2014.03.037

Zheng Y, Shen Z, Cai C et al (2009) The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites. J Hazard Mater 163:600–606. https://doi.org/10.1016/j.jhazmat.2008.07.008

Kwok KCM, Lee VKC, McKay G (2009) Novel model development for sorption of arsenate on chitosan. Chem Eng J 151(1–3):122–133

Lei S, Miyamoto J, Kanoh H et al (2006) Enhancement of the methylene blue adsorption rate for ultramicroporous carbon fiber by addition of mesopores. Carbon NY 44:1884–1890. https://doi.org/10.1016/j.carbon.2006.02.028

Matos M, Barreiro MF, Gandini A (2010) Olive stone as a renewable source of biopolyols. Ind Crop Prod 32:7–12. https://doi.org/10.1016/j.indcrop.2010.02.010

Bautista-Toledo MI, Rivera-Utrilla J, Ocampo-Pérez R et al (2014) Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste. Carbon NY 73:338–350. https://doi.org/10.1016/j.carbon.2014.02.073

Ubago-Pérez R, Carrasco-Marín F, Fairén-Jiménez D, Moreno-Castilla C (2006) Granular and monolithic activated carbons from KOH-activation of olive stones. Microporous Mesoporous Mater 92:64–70. https://doi.org/10.1016/j.micromeso.2006.01.002

Budinova T, Petrov N, Razvigorova M et al (2006) Removal of arsenic(III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Ind Eng Chem Res 45:1896–1901. https://doi.org/10.1021/ie051217a

Stavropoulos GG, Zabaniotou AA (2005) Production and characterization of activated carbons from olive-seed waste residue. Microporous Mesoporous Mater 82:79–85. https://doi.org/10.1016/j.micromeso.2005.03.009

Cimino G, Cappello RM, Caristi C, Toscano G (2005) Characterization of carbons from olive cake by sorption of wastewater pollutants. Chemosphere 61:947–955. https://doi.org/10.1016/j.chemosphere.2005.03.042

Galiatsatou P, Metaxas M, Kasselouri-Rigopoulou V (2002) Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. J Hazard Mater 91:187–203. https://doi.org/10.1016/S0304-3894(02)00008-0

Lafi WK (2001) Production of activated carbon from acorns and olive seeds. Biomass Bioenergy 20:57–62. https://doi.org/10.1016/S0961-9534(00)00062-3

Kula I, Uğurlu M, Karaoğlu H, Çelik A (2008) Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99:492–501. https://doi.org/10.1016/j.biortech.2007.01.015

Martín-Lara MA, Pagnanelli F, Mainelli S et al (2008) Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity. J Hazard Mater 156:448–457. https://doi.org/10.1016/j.jhazmat.2007.12.035

Calero M, Ronda A, Martín-Lara MA et al (2013) Chemical activation of olive tree pruning to remove lead(II) in batch system: factorial design for process optimization. Biomass Bioenergy 58:322–332. https://doi.org/10.1016/j.biombioe.2013.08.021

Limousy L, Ghouma I, Ouederni A, Jeguirim M (2017) Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ Sci Pollut Res 24:9993–10004. https://doi.org/10.1007/s11356-016-7404-8

Soudani N, Najar-Souissi S, Abderkader-Fernandez VK, Ouederni A (2017) Effects of nitrogen plasma treatment on the surface characteristics of olive stone-based activated carbon. Environ Technol 38:956–966. https://doi.org/10.1080/09593330.2016.1214626

Bohli T, Ouederni A (2016) Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase. Environ Sci Pollut Res 23:15852–15861. https://doi.org/10.1007/s11356-015-4330-0

Soudani N, Souissi-najar S, Ouederni A (2013) Influence of nitric acid concentration on characteristics of olive stone based activated carbon. Chin J Chem Eng 21:1425–1430. https://doi.org/10.1016/S1004-9541(13)60638-2

Aziz A, Elandaloussi EH, Belhalfaoui B et al (2009a) Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions. Colloids Surf B: Biointerfaces 73:192–198. https://doi.org/10.1016/j.colsurfb.2009.05.017

Aziz A, Ouali MS, Elandaloussi EH et al (2009b) Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions. J Hazard Mater 163:441–447. https://doi.org/10.1016/j.jhazmat.2008.06.117

Silvestre-Albero A, Silvestre-Albero J, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) Ethanol removal using activated carbon: effect of porous structure and surface chemistry. Microporous Mesoporous Mater 120:62–68. https://doi.org/10.1016/j.micromeso.2008.10.012

Bohli T, Ouederni A, Fiol N, Villaescusa I (2013) Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones. Desalin Water Treat:1–7. https://doi.org/10.1080/19443994.2013.859099

Temdrara L, Addoun A, Khelifi A (2015) Development of olivestones-activated carbons by physical, chemical and physicochemical methods for phenol removal: a comparative study. Desalin Water Treat 53:452–461. https://doi.org/10.1080/19443994.2013.838523

Halet F, Yeddou AR, Chergui A et al (2015) Removal of cyanide from aqueous solutions by adsorption on activated carbon prepared from lignocellulosic by-products. J Dispers Sci Technol 36:1736–1741. https://doi.org/10.1080/01932691.2015.1005311

Bohli T, Ouederni A, Fiol N, Villaescusa I (2015) Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chim 18:88–99. https://doi.org/10.1016/j.crci.2014.05.009

Blázquez G, Calero M, Ronda A et al (2014) Study of kinetics in the biosorption of lead onto native and chemically treated olive stone. J Ind Eng Chem 20:2754–2760. https://doi.org/10.1016/j.jiec.2013.11.003

Alslaibi TM, Abustan I, Ahmad MA, Foul AA (2013a) Comparison of activated carbon prepared from olive stones by microwave and conventional heating for iron (II), lead (II), and copper (II) removal from synthetic wastewater. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.11877

Alslaibi TM, Abustan I, Ahmad MA, Abu Foul A (2014) Preparation of activated carbon from olive stone waste: optimization study on the removal of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ from aqueous solution using response surface methodology. J Dispers Sci Technol 35:913–925. https://doi.org/10.1080/01932691.2013.809506

Abu-El-Sha’r WY, Gharaibeh SH, Mahmoud S (2000) Removal of dyes from aqueous solutions using low-cost sorbents made of solid residues from olive-mill wastes (JEFT) and solid residues from refined Jordanian oil shale. Environ Geol 39:1090–1094. https://doi.org/10.1007/s002549900099

Baçaoui A, Yaacoubi A, Dahbi A et al (2001) Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon NY 39:425–432. https://doi.org/10.1016/S0008-6223(00)00135-4

Al-Anber ZA, Matouq MAD (2008) Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J Hazard Mater 151:194–201. https://doi.org/10.1016/j.jhazmat.2007.05.069

Stasinakis AS, Elia I, Petalas AV, Halvadakis CP (2008) Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. J Hazard Mater 160:408–413. https://doi.org/10.1016/j.jhazmat.2008.03.012

Román S, González JF, González-García CM, Zamora F (2008) Control of pore development during CO2 and steam activation of olive stones. Fuel Process Technol 89:715–720. https://doi.org/10.1016/j.fuproc.2007.12.015

Albadarin AB, Mangwandi C (2015) Mechanisms of alizarin red S and methylene blue biosorption onto olive stone by-product: isotherm study in single and binary systems. J Environ Manag 164:86–93. https://doi.org/10.1016/j.jenvman.2015.08.040

Ghouma I, Jeguirim M, Dorge S et al (2015) Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chim 18:63–74. https://doi.org/10.1016/j.crci.2014.05.006

Hernáinz F, Calero M, Blázquez G et al (2008) Comparative study of the biosorption of cadmium(II), chromium(III), and lead(II) by olive stone. Environ Prog 27:469–478. https://doi.org/10.1002/ep.10299

Calero M, Hernáinz F, Blázquez G et al (2008) Equilibrium modelling of Cr (VI) biosorption by olive stone, pp 827–836

Moubarik A, Grimi N (2015) Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Res Int 73:169–175. https://doi.org/10.1016/j.foodres.2014.07.050

Hodaifa G, Alami SBD, Ochando-Pulido JM, Víctor-Ortega MD (2014) Iron removal from liquid effluents by olive stones on adsorption column: breakthrough curves. Ecol Eng 73:270–275. https://doi.org/10.1016/j.ecoleng.2014.09.049

Tsyntsarski B, Petrova B, Budinova T et al (2014) Removal of detergents from water by adsorption on activated carbons obtained from various precursors. Desalin Water Treat 52:3445–3452. https://doi.org/10.1080/19443994.2013.801327

Alslaibi TM, Abustan I, Ahmad MA, Foul AA (2013b) Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon. J Chem Technol Biotechnol 88:2141–2151. https://doi.org/10.1002/jctb.4073

Petrov N, Budinova T, Razvigorova M et al (2008) Conversion of olive wastes to volatiles and carbon adsorbents. Biomass Bioenergy 32:1303–1310. https://doi.org/10.1016/j.biombioe.2008.03.009

Spahis N, Addoun A, Mahmoudi H, Ghaffour N (2008) Purification of water by activated carbon prepared from olive stones. Desalination 222:519–527. https://doi.org/10.1016/j.desal.2007.02.065

Martínez ML, Torres MM, Guzmán CA, Maestri DM (2006) Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind Crop Prod 23:23–28. https://doi.org/10.1016/j.indcrop.2005.03.001

Yakout SM, Sharaf El-Deen G (2016) Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab J Chem 9:S1155–S1162. https://doi.org/10.1016/j.arabjc.2011.12.002

Demiral İ, Demiral H (2010) Surface characterization of activated carbons obtained from olive bagasse by chemical activation. Surf Interface Anal 42:1347–1350. https://doi.org/10.1002/sia.3294

Rodriguez-Valero M, Martinez-Escandell M, Molina-Sabio M, Rodriguez-Reinoso F (2001) CO2 activation of olive stones carbonized under pressure. Carbon NY 39:320–323

Borrero-López AM, Fierro V, Jeder A et al (2017) High added-value products from the hydrothermal carbonisation of olive stones. Environ Sci Pollut Res 24:9859–9869. https://doi.org/10.1007/s11356-016-7807-6

Guler UA, Ersan M, Tuncel E, Dügenci F (2016) Mono and simultaneous removal of crystal violet and safranin dyes from aqueous solutions by HDTMA-modified Spirulina sp. Process Saf Environ Prot 99:194–206. https://doi.org/10.1016/j.psep.2015.11.006

Fayazi M, Afzali D, Taher MA et al (2015) Removal of safranin dye from aqueous solution using magnetic mesoporous clay: optimization study. J Mol Liq 212:675–685. https://doi.org/10.1016/j.molliq.2015.09.045

Rotte NK, Yerramala S, Boniface J, Srikanth VVSS (2014) Equilibrium and kinetics of safranin O dye adsorption on MgO decked multi-layered graphene. Chem Eng J 258:412–419

Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, Gupta VK (2015) Modeling of competitive ultrasonic assisted removal of the dyes—methylene blue and safranin-O using Fe3O4 nanoparticles. Chem Eng J 268:28–37

Lu J, Zhang C, Wu J, Luo Y (2017) Adsorptive removal of bisphenol A using N-doped biochar made of Ulva prolifera. Water Air Soil Pollut 228:327. https://doi.org/10.1007/s11270-017-3516-0

Dehghani MH, Ghadermazi M, Bhatnagar A et al (2016) Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. J Environ Chem Eng 4:2647–2655. https://doi.org/10.1016/j.jece.2016.05.011

Zheng S, Sun Z, Park Y, Ayoko GA, Frost RL (2013) Removal of bisphenol A from wastewater by Ca-montmorillonite modified with selected surfactants. Chem Eng J 234:416–422. https://doi.org/10.1016/j.cej.2013.08.115

Tounsadi H, Khalidi A, Abdennouri M, Barka N (2016a) Activated carbon from Diplotaxis harra biomass: optimization of preparation conditions and heavy metal removal. J Taiwan Inst Chem Eng 59:348–358. https://doi.org/10.1016/j.jtice.2015.08.014

Tounsadi H, Khalidi A, Machrouhi A et al (2016b) Highly efficient activated carbon from Glebionis coronaria L. biomass: optimization of preparation conditions and heavy metals removal using experimental design approach. J Environ Chem Eng 4:4549–4564. https://doi.org/10.1016/j.jece.2016.10.020

El-Azim HA, Seleman MME, Saad EM (2019) Applicability of water-spray electric arc furnace steel slag for removal of Cd and Mn ions from aqueous solutions and industrial wastewaters. J Environ Chem Eng 7(2):102915 https://doi.org/10.1016/j.jece.2019.102915

Du H, Qu CC, Liu J, Chen W, Cai P, Shi Z, Yu X-Y, Huang Q (2017) Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species. Environ Pollut 229:871–878 https://doi.org/10.1016/j.envpol.2017.07.052

Safari E, Rahemi N, Kahforoushan D, Allahyari S (2019) Copper adsorptive removal from aqueous solution by orange peel residue carbon nanoparticles synthesized by combustion method using response surface methodology. J Environ Chem Eng 7:102847. https://doi.org/10.1016/j.jece.2018.102847

Hadi P, Xu M, Ning C et al (2015c) A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chem Eng J 260:895–906. https://doi.org/10.1016/j.cej.2014.08.088

Van Tran T, Bui QTP, Nguyen TD, Le NTH, Bach LG (2019) A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology. Adsorpt Sci Technol 35(1–2):72–85. https://doi.org/10.1177/0263617416669152

Geyikçi F, Kılıç E, Çoruh S, Elevli S (2012) Modelling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANN. Chem Eng J 183:53–59. https://doi.org/10.1016/j.cej.2011.12.019

Cincotti A, Lai N, Orrù R, Cao G (2001) Sardinian natural clinoptilolites for heavy metals and ammonium removal: experimental and modeling. Chem Eng J 84(3):275–282. https://doi.org/10.1016/S1385-8947(00)00286-2

Koong LF, Lam KF, Barford J, McKay G (2013) A comparative study on selective adsorption of metal ions using aminated adsorbents. J Colloid Interface Sci 395:230–240

Nemchi F, Bestani B, Benderdouche N, Belhakem M, Duclaux L (2017) Enhancement of Ni2+ removal capacity of activated carbons obtained from Mediterranean Ulva lactuca and Systoceira stricta algal species. J Environ Chem Eng 5(3):2337–2345 https://doi.org/10.1016/j.jece.2017.03.027

Hameed B, Din A, Ahmad A (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141:819–825. https://doi.org/10.1016/j.jhazmat.2006.07.049

Kumar A, Jena HM (2016) Removal of methylene blue and phenol onto prepared activated carbon from fox nutshell by chemical activation in batch and fixed-bed column. J Clean Prod 137:1246–1259. https://doi.org/10.1016/j.jclepro.2016.07.177

Chatterjee S, Kumar A, Basu S, Dutta S (2012) Application of response surface methodology for methylene blue dye removal from aqueous solution using low cost adsorbent. Chem Eng J 181–182:289–299

Lyu H, Gao B, He F, Zimmerman AR, Ding C, Tang J, Crittenden JC (2018) Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem Eng J 335:110–119

El Nemr A, El-Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117. https://doi.org/10.1016/j.arabjc.2011.01.016

Parlayici S, Eskizeybek V, Avcı A, Pehlivan E (2015) Removal of chromium (VI) using activated carbon-supported-functionalized carbon nanotubes. J Nanostructure Chem 5:255–263. https://doi.org/10.1007/s40097-015-0156-z

Zhong D, Zhang Y, Wang L, Chen J, Jiang Y, Tsang DCW, Zhao Z, Ren S, Liu Z, Crittenden JC (2018) Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: key roles of Fe3O4 and persistent free radicals. Environ Pollut 243(B):1302–1309. https://doi.org/10.1016/j.envpol.2018.08.093

Jeon C (2019) Removal of Cr(VI) from aqueous solution using amine-impregnated crab shells in the batch process. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2019.04.025

Choudhary B, Paul D (2018) Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. J Environ Chem Eng 6(2):2335–2343 https://doi.org/10.1016/j.jece.2018.03.028

Peres EC, Cunha JM, Dortzbacher GF, Pavan FA, Lima EC, Foletto EL, Dotto GL (2018) Treatment of leachates containing cobalt by adsorption on Spirulina sp. and activated charcoal. J Environ Chem Eng 6(1): 677–685. 10.1016/j.jece.2017.12.060

Anoop Krishnan K, Sreejalekshmi KG, Vimexen V, Dev VV (2016) Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions. Ecotoxicol Environ Saf 124:418–425. https://doi.org/10.1016/j.ecoenv.2015.11.018

Bestani B, Benderdouche N, Benstaali B et al (2008) Methylene blue and iodine adsorption onto an activated desert plant. Bioresour Technol 99:8441–8444. https://doi.org/10.1016/j.biortech.2008.02.053

Saka C (2012) BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrolysis 95:21–24. https://doi.org/10.1016/j.jaap.2011.12.020

Rodrigues LA, Silva MLCP, Alvarez-Mendes MO, Coutinho ADR, Thim GP (2011) Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem Eng J 174(1):49–57

Banat FA, Al-Bashir B, Al-Asheh HO (2000) Adsorption of phenol by bentonite. Environ Pollut 107(3):391–398. https://doi.org/10.1016/S0269-7491(99)00173-6

Sze MFF, McKay G (2010) An adsorption diffusion model for removal of para-chlorophenol by activated carbon derived from bituminous coal. Environ Pollut 158(5):1669–1674