Product diversity and regulation of type II fatty acid synthases

Biochemistry and Cell Biology - Tập 82 Số 1 - Trang 145-155 - 2004
Ying‐Jie Lu1, Yongmei Zhang, Charles O. Rock
1Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA

Tóm tắt

Fatty acid biosynthesis is catalyzed in most bacteria by a group of highly conserved proteins known as the type II fatty acid synthase (FAS II) system. FAS II has been extensively studied in the Escherichia coli model system, and the recent explosion of bioinformatic information has accelerated the investigation of the pathway in other organisms, mostly important human pathogens. All FAS II systems possess a basic set of enzymes for the initiation and elongation of acyl chains. This review focuses on the variations on this basic theme that give rise to the diversity of products produced by the pathway. These include multiple mechanisms to generate unsaturated fatty acids and the accessory components required for branched-chain fatty acid synthesis in Gram-positive bacteria. Most of the known mechanisms that regulate product distribution of the pathway arise from the fundamental biochemical properties of the expressed enzymes. However, newly identified transcriptional factors in bacterial fatty acid biosynthetic pathways are a fertile field for new investigation into the genetic control of the FAS II system. Much more work is needed to define the role of these factors and the mechanisms that regulate their DNA binding capability, but there appear to be fundamental differences in how the expression of the pathway genes is controlled in Gram-negative and in Gram-positive bacteria.Key words: fatty acid synthase, bacteria.

Từ khóa


Tài liệu tham khảo

Aguilar P.S., 1998, J. Bacteriol., 180, 2194, 10.1128/JB.180.8.2194-2200.1998

Aguilar P.S., 1999, J. Bacteriol., 181, 7028, 10.1128/JB.181.22.7028-7033.1999

Aguilar P.S., 2001, EMBO J., 20, 1681, 10.1093/emboj/20.7.1681

Alekshun M.N., 2000, Mol. Microbiol., 35, 1394, 10.1046/j.1365-2958.2000.01802.x

Alekshun M.N., 2001, Nat. Struct. Biol., 8, 710, 10.1038/90429

Altabe S.G., 2003, J. Bacteriol., 185, 3228, 10.1128/JB.185.10.3228-3231.2003

Anderson M.S., 1993, J. Biol. Chem., 268, 858

Bloch K., 1968, Acc. Chem. Res., 2, 193, 10.1021/ar50019a001

Boudreaux D.P., 1981, Eur. J. Biochem., 115, 175, 10.1111/j.1432-1033.1981.tb06214.x

Brozek K.A., 1996, J. Biol. Chem., 271, 126

Campbell J.W., 2001, Rev. Microbiol., 55, 305, 10.1146/annurev.micro.55.1.305

Campbell J.W., 2001, J. Bacteriol., 183, 5982, 10.1128/JB.183.20.5982-5990.2001

Campbell J.W., 2003, Mol. Microbiol., 47, 793, 10.1046/j.1365-2958.2003.03341.x

Choi K.-H., 2000, J. Bacteriol., 182, 365, 10.1128/JB.182.2.365-370.2000

Choi K.-H., 2000, J. Biol. Chem., 275, 201

Clark D.P., 1983, Biochemistry, 22, 5897, 10.1021/bi00294a032

Cronan J.E., Jr., 2003, Rev. Microbiol., 57, 203, 10.1146/annurev.micro.57.030502.090851

Cronan J.E., Jr., 1998, Mol. Microbiol., 29, 937, 10.1046/j.1365-2958.1998.00917.x

Cronan J.E., Jr., 1972, Biochim. Biophys. Acta, 265, 25, 10.1016/0304-4157(72)90018-4

Cronan J.E., Jr., 1969, J. Bacteriol., 100, 601, 10.1128/JB.100.2.601-604.1969

Cronan J.E., Jr., 1975, J. Biol. Chem., 250, 5835, 10.1016/S0021-9258(19)41128-9

Cropp T.A., 2000, Can. J. Microbiol., 46, 506, 10.1139/w00-028

Cybulski L.E., 2002, Mol. Microbiol., 45, 1379, 10.1046/j.1365-2958.2002.03103.x

D'Agnolo G., 1975, J. Biol. Chem., 250, 5289, 10.1016/S0021-9258(19)41179-4

Davies C., 2000, Structure, 8, 185, 10.1016/S0969-2126(00)00094-0

Davis M.S., 2001, J. Bacteriol., 183, 1499, 10.1128/JB.183.4.1499-1503.2001

de Mendoza D., 1983, Trends Biochem. Sci., 8, 49, 10.1016/0968-0004(83)90388-2

de Mendoza D., 1983, J. Biol. Chem., 258, 2098, 10.1016/S0021-9258(18)32888-6

DiRusso C.C., 1992, J. Biol. Chem., 267, 8685, 10.1016/S0021-9258(18)42497-0

Garwin J.L., 1980, J. Biol. Chem., 255, 949, 10.1016/S0021-9258(19)86125-2

Garwin J.L., 1980, J. Biol. Chem., 255, 3263, 10.1016/S0021-9258(19)85692-2

Gelmann E.P., 1972, J. Bacteriol., 112, 381, 10.1128/JB.112.1.381-387.1972

Han L., 1998, J. Bacteriol., 180, 4481, 10.1128/JB.180.17.4481-4486.1998

He X., 2002, Antimicrob. Agents Chemother., 46, 1310, 10.1128/AAC.46.5.1310-1318.2002

Heath R.J., 1996, J. Biol. Chem., 271, 996

Heath R.J., 1996, J. Biol. Chem., 271, 1833, 10.1074/jbc.271.4.1833

Heath R.J., 1996, J. Biol. Chem., 271, 795

Heath R.J., 2001, Appl. Microbiol. Biotechnol., 58, 695

Heath R.J., 2001, Prog. Lipid Res., 40, 467, 10.1016/S0163-7827(01)00012-1

Henry M.F., 1991, J. Mol. Biol., 222, 843, 10.1016/0022-2836(91)90574-P

Henry M.F., 1992, Cell, 70, 671, 10.1016/0092-8674(92)90435-F

Hoang T.T., 1997, J. Bacteriol., 179, 5326, 10.1128/jb.179.17.5326-5332.1997

Huang W., 1998, EMBO J., 17, 1183, 10.1093/emboj/17.5.1183

Jackowski S., 2002, Biochem. Biophys. Res. Commun., 292, 1155, 10.1006/bbrc.2001.2022

Kaneda T., 1963, J. Biol. Chem., 238, 1229, 10.1016/S0021-9258(18)81168-1

Kaneda T., 1991, Microbiol. Rev., 55, 288, 10.1128/MMBR.55.2.288-302.1991

Kass L.R., 1967, Proc. Natl. Acad. Sci. U.S.A., 58, 1168, 10.1073/pnas.58.3.1168

Kelly T.M., 1993, J. Biol. Chem., 268, 866

Kremer L., 2001, J. Biol. Chem., 276, 967

Kunst F., 1997, Nature (Lond.), 390, 249, 10.1038/36786

Leesong M., 1996, Structure, 4, 253, 10.1016/S0969-2126(96)00030-5

Lewis R.N.A.H., 1985, Biochemistry, 24, 2431, 10.1021/bi00331a007

Mansilla M.C., 2003, Fatty Acids, 68, 187, 10.1016/S0952-3278(02)00269-7

Mantsch H.H., 1985, Biochemistry, 24, 2440, 10.1021/bi00331a008

Mantsch H.H., 1987, Biochemistry, 26, 4045, 10.1021/bi00387a045

Marrakchi H., 2002, J. Biol. Chem., 277, 809, 10.1074/jbc.M208920200

McCue L., 2001, Nucleic Acids Res., 29, 774, 10.1093/nar/29.3.774

Moche M., 1999, J. Biol. Chem., 274, 6031, 10.1074/jbc.274.10.6031

Moche M., 2001, J. Mol. Biol., 305, 491, 10.1006/jmbi.2000.4272

Mohan S., 1994, J. Biol. Chem., 269, 896, 10.1016/S0021-9258(20)30075-2

Nunn W.D., 1983, J. Bacteriol., 154, 554, 10.1128/JB.154.2.554-560.1983

Oku H., 1988, J. Biol. Chem., 263, 386

Olsen J.G., 2001, Structure, 9, 233, 10.1016/S0969-2126(01)00583-4

Osterman A., 2003, Curr. Opin. Chem. Biol., 7, 238, 10.1016/S1367-5931(03)00027-9

Overath P., 1967, Biochem. Biophys. Res. Commun., 29, 28, 10.1016/0006-291X(67)90535-9

Overath P., 1969, Eur. J. Biochem., 7, 559, 10.1111/j.1432-1033.1969.tb19644.x

Price A.C., 2001, J. Biol. Chem., 276, 6551, 10.1074/jbc.M007101200

Price A.C., 2003, J. Bacteriol., 185, 4136, 10.1128/JB.185.14.4136-4143.2003

Qiu X., 2001, J. Mol. Biol., 307, 341, 10.1006/jmbi.2000.4457

Raetz C.R., 2002, Rev. Biochem., 71, 635, 10.1146/annurev.biochem.71.110601.135414

Rock C.O., 1996, Biochim. Biophys. Acta, 1302, 1, 10.1016/0005-2760(96)00056-2

Scarsdale J.N., 2001, J. Biol. Chem., 276, 516, 10.1074/jbc.M010762200

Schaeffer M.L., 2001, AcpM. Biochim. Biophys. Acta, 1532, 67, 10.1016/S1388-1981(01)00116-0

Schujman G.E., 2001, J. Bacteriol., 183, 3032, 10.1128/JB.183.10.3032-3040.2001

Schujman G.E., 2003, Dev. Cell, 4, 663, 10.1016/S1534-5807(03)00123-0

Silbert D.F., 1967, Proc. Natl. Acad. Sci. U.S.A., 58, 1579, 10.1073/pnas.58.4.1579

Smirnova N., 2001, J. Ind. Microbiol. Biotechnol., 27, 246, 10.1038/sj.jim.7000185

Sunohara J.R., 2001, J. Neurochem., 78, 664, 10.1046/j.1471-4159.2001.00458.x

Tsuji S.Y., 2001, Biochemistry, 40, 2326, 10.1021/bi002463n

van Aalten D.M., 2000, EMBO J., 19, 5167, 10.1093/emboj/19.19.5167

van Aalten D.M., 2001, EMBO J., 20, 2041, 10.1093/emboj/20.8.2041

Wang G.-F., 1993, Eur. J. Biochem., 213, 1091, 10.1111/j.1432-1033.1993.tb17858.x

Willecke K., 1971, J. Biol. Chem., 246, 5261

Wong H.C., 2002, J. Biol. Chem., 277, 874

Wyckoff T.J., 1998, J. Biol. Chem., 273, 369, 10.1074/jbc.273.49.32369

Xu F.Y., 2003, J. Lipid Res., 44, 415, 10.1194/jlr.M200335-JLR200

Xu Y., 2001, J. Biol. Chem., 276, 373

Zhang Y.M., 2002, J. Biol. Chem., 277, 558

Zhang Y.X., 1999, Microbiology, 145, 2323, 10.1099/00221287-145-9-2323