Kỹ thuật chế biến, tính chất vi cấu trúc và cơ học của thép không gỉ sản xuất bằng công nghệ in 3D hồ quang dây: Một bài tổng quan

Sumit K. Sharma1, Chaitanya Sharma2
1Department of Metallurgical Engineering, Birsa Institute of Technology (BIT), Sindri, India
2Department of Mechanical Engineering, BIT Sindri, Sindri, India

Tóm tắt

Công nghệ sản xuất gia tăng (additive manufacturing) có khả năng giảm dấu chân carbon trong sản xuất nhằm phát triển bền vững, vì vậy ngày càng trở nên phổ biến. Khác với sản xuất cắt gọt, sản xuất gia tăng chế tạo các bộ phận bằng cách đặt đúng lượng vật liệu tại đúng vị trí dưới dạng các lớp mỏng liên tiếp, nhằm giảm thiểu chất thải và dấu chân carbon. Có nhiều kỹ thuật khác nhau cho sản xuất gia tăng yêu cầu vật liệu ở dạng bột để tạo ra các cấu trúc và thiết kế sáng tạo, tiết kiệm năng lượng và kinh tế với tỷ lệ mua-vận chuyển thấp, điều mà không thể thực hiện bằng các kỹ thuật sản xuất truyền thống. Sản xuất gia tăng hồ quang dây là một trong những công nghệ có tính thích ứng có thể cách mạng hóa và biến đổi in 3D kim loại nhờ vào những tiến bộ công nghệ gần đây. Công nghệ này có khả năng in ra các linh kiện kim loại ba chiều chất lượng cao, chi phí thấp, phức tạp mà khó phát triển bằng các phương pháp thông thường khác và do đó được sử dụng rộng rãi trong lĩnh vực hàng không, ô tô và nhiều ngành công nghiệp khác. Bài viết này nhằm xem xét các khía cạnh khác nhau của quy trình sản xuất gia tăng hồ quang dây như vi cấu trúc và hành vi cơ học, các khuyết tật, và sự phát triển ứng suất dư trong các thép/bộ phận đã chế tạo, tiếp theo là sự tóm tắt và phạm vi cho công việc tương lai.

Từ khóa

#Công nghệ sản xuất gia tăng #hồ quang dây #thép không gỉ #vi cấu trúc #tính chất cơ học #sản xuất bền vững.

Tài liệu tham khảo

J. H, M.M.J. Coykendall, M. Cotteleer, 3D Opportunity in Aerospace and Defense: Additive Manufacturing Takes flight A Deloitte Series on Additive Manufacturing, vol. 1 (Deloitte University Press, Westlake, 2014) S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove, Wire + Arc additive manufacturing. Mater. Sci. Technol. (United Kingdom) 32(7), 641–647 (2016). https://doi.org/10.1179/1743284715Y.0000000073 J. Guo, Y. Zhou, C. Liu, Q. Wu, X. Chen, and J. Lu. Wire arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency. Materials (Basel) 9(10). (2016). https://doi.org/10.3390/ma9100823 J.R. Davis, Metals Handbook, 2nd edn. (ASM International, 1990) K.S. Derekar, A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Technol. (United Kingdom) 34(8), 895–916 (2018). https://doi.org/10.1080/02670836.2018.1455012 Renishaw. First metal 3D printed bicycle frame manufactured by Renishaw for Empire Cycles. 24154 (2021) D. Janie. A Comprehensive List of all the Metal 3D Printer Manufacturers (2019) J. Pellettieri, Automotive Applications Embracing Metal Additive Manufacturing (2018) T.A. Knezović N, Wire and Arc Additive Manufacturing (WAAM) – A New Advance in Manufacturing, New Techno. Lecture Notes in Networks and Systems, 42 (2019) J. Mehnen, J. Ding, H. Lockett, P. Kazanas, Design study for wire and arc additive manufacture. Int. J. Prod. Dev. 19(1–3), 2–20 (2014). https://doi.org/10.1504/IJPD.2014.060028 Tanmay, M. Chandra, S. Sharma, S. S. Panda, Study of mechanical and metallurgical properties of cold and hot reciprocating wire TIG welding on AISI 1035 carbon steel. J. Inst. Eng. Ser. D 102(1), 159–166 (2021). https://doi.org/10.1007/s40033-021-00249-2 S.K. Sharma, K. Biswas, J.D. Majumdar, Effect of heat input on mechanical and electrochemical properties of electron-beam-welded Inconel 718. J. Mater. Eng. Perform. 29(3), 1706–1714 (2020). https://doi.org/10.1007/s11665-020-04660-w S.K. Sharma, K. Biswas, A.K. Nath, I. Manna, J.D. Majumdar, Microstructural characterization of laser surface-melted Inconel 718. J. Opt. 49, 494–509 (2020). https://doi.org/10.1007/s12596-020-00649-9 R. Kumar, N. Ramesh Mevada, S. Rathore, N. Agarwal, V. Rajput, A.S. Barad, Experimental investigation and optimization of TIG welding parameters on aluminum 6061 alloy using firefly algorithm. IOP Conf. Ser. Mater. Sci. Eng. 225, 012153 (2017). https://doi.org/10.1088/1757-899x/225/1/012153 Y. Nilsiam, P.G. Sanders, J.M. Pearce, Applications of open source GMAW-based metal 3-D printing. J. Manuf. Mater. Process. (2018). https://doi.org/10.3390/jmmp2010018 G.C. Anzalone, C. Zhang, B. Wijnen, P.G. Sanders, J.M. Pearce, A low-cost open-source metal 3-D printer. IEEE Access 1, 803–810 (2013). https://doi.org/10.1109/ACCESS.2013.2293018 A. S. Haselhuhn, E. J. Gooding, A. G. Glover, G. C. Anzalone, B. Wijnen, P. G. Sanders, J. M. Pearce. Substrate release mechanisms for gas metal arc weld 3d aluminum metal printing. 3D Print. Addit. Manuf. 1(4), 204–209 (2014). https://doi.org/10.1089/3dp.2014.0015 Y.-M. Kwak, C.C. Doumanidis, Geometry regulation of material deposition in near-net shape manufacturing by thermally scanned welding. J. Manuf. Process. 4(1), 28–41 (2002). https://doi.org/10.1016/S1526-6125(02)70131-X J.D. Spencer, P.M. Dickens, C.M. Wykes, Rapid prototyping of metal parts by three-dimensional welding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 212(3), 175–182 (1998). https://doi.org/10.1243/0954405981515590 A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, W. Bleck. Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel. Mater. Sci. Eng. A, 589, 1–14 (2014). https://doi.org/10.1016/j.msea.2013.09.056 A.S. Haselhuhn, M.W. Buhr, B. Wijnen, P.G. Sanders, J.M. Pearce, Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing. Mater. Sci. Eng. A 673, 511–523 (2016). https://doi.org/10.1016/j.msea.2016.07.099 X. Lu, Y.F. Zhou, X.L. Xing, L.Y. Shao, Q.X. Yang, S.Y. Gao, Open-source wire and arc additive manufacturing system: Formability, microstructures, and mechanical properties. Int. J. Adv. Manuf. Technol. 93(5), 2145–2154 (2017). https://doi.org/10.1007/s00170-017-0636-z X. Chen, J. Li, X. Cheng, B. He, H. Wang, Z. Huang, Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater. Sci. Eng. A 703, 567–577 (2017). https://doi.org/10.1016/j.msea.2017.05.024 A. Waqas, Q. Xiansheng, X. Jiangtao, Y. Chaoran, L. Fan, Impact toughness of components made by GMAW based additive manufacturing. Procedia Struct. Integr. 13, 2065–2070 (2018). https://doi.org/10.1016/j.prostr.2018.12.207 F. Xu, Y. Lv, Y. Liu, F. Shu, P. He, B. Xu, Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process. J. Mater. Sci. Technol. 29(5), 480–488 (2013). https://doi.org/10.1016/j.jmst.2013.02.010 X. Bai, P. Colegrove, J. Ding, X. Diao, C. Bridgeman, P. R. Honnige, J. Zhang, H. William. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing, Int. J. Heat Mass Transf. 124, 504–516 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085 B. Cong, R. Ouyang, B. Qi, J. Ding, Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds. Rare Met. Mater. Eng. 45(3), 606–611 (2016). https://doi.org/10.1016/S1875-5372(16)30080-7 A.N.M. Tanvir, M.D. Islam, F. Ahmed, Analysis of thermoelastic characteristics in a thick walled FGM cylinder. AIP Conf. Proc. 1919(1), 20030 (2017). https://doi.org/10.1063/1.5018548 H.T. Zhang, J.C. Feng, P. He, B.B. Zhang, J.M. Chen, L. Wang, The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel. Mater. Sci. Eng. A 499(1), 111–113 (2009). https://doi.org/10.1016/j.msea.2007.11.124 M.R.U. Ahsan, Y. Kim, R. Ashiri, Y.J. Cho, C. Jeong, Y.-D. Park, Cold metal transfer (CMT) GMAW of zinc coated steel (2016). M.R.U. Ahsan, Y.R. Kim, C.H. Kim, J.W. Kim, R. Ashiri, Y.D. Park, Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels. Sci. Technol. Weld. Join. 21(3), 209–215 (2016). https://doi.org/10.1179/1362171815Y.0000000084 J.I. Ruiz-Vela, J.J. Montes-Rodríguez, E. Rodríguez-Morales, J.A. Toscano-Giles, Effect of cold metal transfer and gas tungsten arc welding processes on the metallurgical and mechanical properties of Inconel® 625 weldings. Weld. World 63(2), 459–479 (2019). https://doi.org/10.1007/s40194-018-0661-z R. Cottam, J. Wang, V. Luzin, Characterization of microstructure and residual stress in a 3D H13 tool steel component produced by additive manufacturing. J. Mater. Res. 29(17), 1978–1986 (2014). https://doi.org/10.1557/jmr.2014.190 J. Ge, T. Ma, Y. Chen, T. Jin, H. Fu, R. Xiao, Y. Lei, J. Lin, Wire-arc additive manufacturing H13 part: 3D pore distribution, microstructural evolution, and mechanical performances. J. Alloys Compd. 783, 145–155, (2019). https://doi.org/10.1016/j.jallcom.2018.12.274 T. Wang, Y. Zhang, Z. Wu, C. Shi, Microstructure and properties of die steel fabricated by WAAM using H13 wire. Vacuum 149, 185–189 (2018). https://doi.org/10.1016/j.vacuum.2017.12.034 S. Wang, H. Gu, W. Wang, C. Li, L. Ren, Z. Wang, Y. Zhai, P. Ma, Study on microstructural and mechanical properties of an Al-Cu-Sn alloy wall deposited by double-wire arc additive manufacturing process. Materials (Basel) 13(1). (2020). https://doi.org/10.3390/ma13010073 Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N. H. Loh, E. Liu, S.B. Tor, Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 139, 565–586 (2018). https://doi.org/10.1016/j.matdes.2017.11.021 X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting, Acta Mater. 97, 1–16 (2015). https://doi.org/10.1016/j.actamat.2015.06.036 L. Qian, J. Mei, J. Liang, X. Wu, Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples. Mater. Sci. Technol. 21(5), 597–605 (2005). https://doi.org/10.1179/174328405X21003 W. Wu, J. Xue, L. Wang, Z. Zhang, Y. Hu, C. Dong, Forming process, microstructure, and mechanical properties of thin-walled 316L stainless steel using speed-cold-welding additive manufacturing. Metals (Basel) (2019). https://doi.org/10.3390/met9010109 Y. Feng, B. Zhan, J. He, K. Wang, The double-wire feed and plasma arc additive manufacturing process for deposition in Cr-Ni stainless steel. J. Mater. Process. Technol. 259, 206–215 (2018). https://doi.org/10.1016/j.jmatprotec.2018.04.040 V.A. Hosseini, M. Högström, K. Hurtig, M.A. Valiente Bermejo, L.-E. Stridh, L. Karlsson, Wire-arc additive manufacturing of a duplex stainless steel: Thermal cycle analysis and microstructure characterization. Weld. World 63(4), 975–987 (2019). https://doi.org/10.1007/s40194-019-00735-y J. Xiong, Y. Li, R. Li, Z. Yin, Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. J. Mater. Process. Technol. 252, 128–136 (2018). https://doi.org/10.1016/j.jmatprotec.2017.09.020 A. Caballero, J. Ding, S. Ganguly, S. Williams, Wire + Arc Additive Manufacture of 17–4 PH stainless steel: Effect of different processing conditions on microstructure, hardness, and tensile strength. J. Mater. Process. Technol. 268, 54–62 (2019). https://doi.org/10.1016/j.jmatprotec.2019.01.007 J. Stuzer, T. Totzauer, B. Wittig, M. Zinke, S. Juttner, GMAW Cold wire technology for adjusting the manufactured duplex stainless steel components. Metals (Basel) 9(5), 564–583 (2019) B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, J. Norrish. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement, J. Manuf. Process. 35, 127–139 (2018). https://doi.org/10.1016/j.jmapro.2018.08.001 J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P. M. S. Almeida, F. Wang, S. Williams, Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Comput. Mater. Sci. 50(12), 3315–3322 (2011). https://doi.org/10.1016/j.commatsci.2011.06.023 P.A. Colegrove, H. E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash, L.D. Cozzolino, Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J. Mater. Process. Technol. 213(10), 1782–1791 (2013). https://doi.org/10.1016/j.jmatprotec.2013.04.012 W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016). https://doi.org/10.1080/09506608.2015.1116649 J.V. Gordon, D. Harlow, Statistical modeling of wire and arc additive manufactured stainless steel 304: Microstructure and fatigue. Int. J. Reliab. Qual. Saf. Eng. 26, 1950016 (2019) J. X. Fang, S. Y. Dong, Y. J. Wang, B. S. Xu, Z. H. Zhang, D. Xia, P. He, The effects of solid-state phase transformation upon stress evolution in laser metal powder deposition. Mater. Des. 87, 807–814 (2015). https://doi.org/10.1016/j.matdes.2015.08.061 Y. Lee, Y. Bandari, P. Nandwana, B.T. Gibson, B. Richardson, S. Simunovic, Effect of interlayer cooling time, constraint and tool path strategy on deformation of large components made by laser metal deposition with wire. Appl. Sci. (2019). https://doi.org/10.3390/app9235115 N. Rodriguez, L. Vázquez, I. Huarte, E. Arruti, I. Tabernero, P. Alvarez, Wire and arc additive manufacturing: A comparison between CMT and TopTIG processes applied to stainless steel. Weld. World 62(5), 1083–1096 (2018). https://doi.org/10.1007/s40194-018-0606-6 Y. Tian, B. Ouyang, A. Gontcharov, R. Gauvin, P. Lowden, M. Brochu, Microstructure evolution of Inconel 625 with 0.4 wt% boron modification during gas tungsten arc deposition. J. Alloys Compd. 694, 429–438 (2017). https://doi.org/10.1016/j.jallcom.2016.10.019 B. Dong, Z. Pan, C. Shen, Y. Ma, H. Li, Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process. Metall. Mater. Trans. B 48(6), 3143–3151 (2017). https://doi.org/10.1007/s11663-017-1071-0 H. Geng, J. Li, J. Xiong, X. Lin, F. Zhang, Optimization of wire feed for GTAW based additive manufacturing. J. Mater. Process. Technol. 243, 40–47 (2017). https://doi.org/10.1016/j.jmatprotec.2016.11.027 S. Basak, S. K. Sharma, M. Mondal, K.K. Sahu, S. Gollapudi, J. D. Majumdar, S.T. Hong, Electron Beam Surface Treatment of 316L Austenitic Stainless Steel: Improvements in Hardness, Wear, and Corrosion Resistance. Met. Mater. Int. 27, 953-961 (2020). https://doi.org/10.1007/s12540-020-00773-y L. Wang, J. Xue, Q. Wang, Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel. Mater. Sci. Eng. A 751, 183–190 (2019). https://doi.org/10.1016/j.msea.2019.02.078 A. Scotti, V. Ponomarev, W. Lucas, Interchangeable metal transfer phenomenon in GMA welding: Features, mechanisms, classification. J. Mater. Process. Technol. 214(11), 2488–2496 (2014). https://doi.org/10.1016/j.jmatprotec.2014.05.022 A. Scotti, V. Ponomarev, W. Lucas, A scientific application oriented classification for metal transfer modes in GMA welding. J. Mater. Process. Technol. 212(6), 1406–1413 (2012). https://doi.org/10.1016/j.jmatprotec.2012.01.021 H. Yi, L. Qi, J. Luo, D. Zhang, N. Li, Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores. J. Mater. Process. Technol. 264, 145–154 (2019). https://doi.org/10.1016/j.jmatprotec.2018.09.004 F. Hejripour, F. Binesh, M. Hebel, D.K. Aidun, Thermal modeling and characterization of wire arc additive manufactured duplex stainless steel. J. Mater. Process. Technol. 272, 58–71 (2019). https://doi.org/10.1016/j.jmatprotec.2019.05.003 Z. Qiu, B. Wu, H. Zhu, Z. Wang, A. K. Hellier, Y. Ma, H. J. Li, O. Muransky, D. Wexler. Microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy. Mater. Des. 195 (2020). https://doi.org/10.1016/j.matdes.2020.109007 C. Bourlet, S. Zimmer-Chevret, R. Pesci, R. Bigot, A. Robineau, F. Scandella, Microstructure and mechanical properties of high strength steel deposits obtained by wire-arc additive manufacturing. J. Mater. Process. Technol. 285, 1–35 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116759 S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An overview of direct laser deposition for additive manufacturing; part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 8, 36–62 (2015). https://doi.org/10.1016/j.addma.2015.07.001 P. Wang, M.L.S. Nai, X. Tan, W.J. Sin, S.B. Tor, J. Wei, Anisotropic mechanical properties in a big-sized Ti-6Al-4V plate fabricated by electron beam melting. TMS Annu. Meet. (2016). https://doi.org/10.1007/978-3-319-48254-5_1 V. Cain, L. Thijs, J. Van Humbeeck, B. Van Hooreweder, R. Knutsen, Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit. Manuf. 5, 68–76 (2015). https://doi.org/10.1016/j.addma.2014.12.006 M. Fattahi, N. Nabhani, M.R. Vaezi, E. Rahimi, Improvement of impact toughness of AWS E6010 weld metal by adding TiO2 nanoparticles to the electrode coating. Mater. Sci. Eng. A 528(27), 8031–8039 (2011). https://doi.org/10.1016/j.msea.2011.07.035 T.A. Rodrigues, V. Duarte, J.A. Avila, T.G. Santos, R.M. Miranda, J.P. Oliveira, Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties. Addit. Manuf. 27(March), 440–450 (2019). https://doi.org/10.1016/j.addma.2019.03.029 K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques. Prog. Aerosp. Sci. 55, 1–16 (2012). https://doi.org/10.1016/j.paerosci.2012.04.001 L. Wang, Y. Zhang, X. Hua, C. Shen, F. Li, Y. Huang, Y. Ding, P. Zhang, Q. Lu, T. Zhang, J. Shang, Twin-wire plasma arc additive manufacturing of the Ti–45Al titanium aluminide: Processing, microstructures and mechanical properties. Intermetallics 136, 107277 (2021). https://doi.org/10.1016/j.intermet.2021.107277 K.S. Chan, Y.-W. Kim, Effects of lamellae spacing and colony size on the fracture resistance of a fully-lamellar TiAl alloy. Acta Metall. Mater. 43(2), 439–451 (1995). https://doi.org/10.1016/0956-7151(94)00278-P D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019