Process intensification of the catalytic hydrogenation of squalene using a Pd/CNT catalyst combining nanoparticles and single atoms in a continuous flow reactor

Chemical Engineering Journal - Tập 441 - Trang 135951 - 2022
Laurent Vanoye1, Boris Guicheret1, Camila Rivera-Cárcamo2, Ruben Castro Contreras2, Claude de Bellefon1, Valérie Meille1, Philippe Serp2, Régis Philippe1, Alain Favre-Réguillon1,3
1Université de Lyon, Catalyse, Polymérisation, Procédés & Matériaux (CP2M), UMR 5128 CNRS – CPE Lyon – Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
2Université de Toulouse, ENSIACET, LCC CNRS-UPR 8241, F-31030 Toulouse, France
3Conservatoire National des Arts et Métiers, EPN7-CG, F-75003 Paris, France

Tài liệu tham khảo

Spanova, 2011, Squalene - biochemistry, molecular biology, process biotechnology, and applications, Eur. J. Lipid Sci. Technol., 113, 1299, 10.1002/ejlt.201100203 Tsujimoto, 1916, A highly unsaturated hydrocarbon in shark liver oil, J. Ind. Eng. Chem., 8, 889, 10.1021/i500010a005 Lozano-Grande, 2018, Plant Sources, Extraction Methods, and Uses of Squalene, Int. J. Agron., 2018, 1, 10.1155/2018/1829160 Naziri, 2012, Recovery of Squalene from Wine Lees Using Ultrasound Assisted Extraction—A Feasibility Study, J. Agric. Food. Chem., 60, 9195, 10.1021/jf301059y Naziri, 2011, Squalene resources and uses point to the potential of biotechnology, Lipid Technol., 23, 270, 10.1002/lite.201100157 Patel, 2020, Novel Biorefinery Approach Aimed at Vegetarians Reduces the Dependency on Marine Fish Stocks for Obtaining Squalene and Docosahexaenoic Acid, ACS Sustainable Chem. Eng., 8, 8803, 10.1021/acssuschemeng.0c02752 Xu, 2016, Production of squalene by microbes: an update, World J. Microbiol. Biotechnol., 32, 195, 10.1007/s11274-016-2155-8 Wei, 2018, Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae, Biotechnol. Bioeng., 115, 1793, 10.1002/bit.26595 Ghimire, 2016, Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives, J. Microbiol. Biotechnol., 26, 441, 10.4014/jmb.1510.10039 Fisher, 2010, Preparation of farnesene dimers and/or farnesane dimers and lubricant compositions thereof, Amyris Biotechnologies Inc, USA Fisher, 2011, Squalane and isosqualane compositions and methods for preparing the same, Amyris Biotechnologies Inc, USA Naziri, 2014, Squalene oxidation products: Monitoring the formation, characterisation and pro-oxidant activity, Eur. J. Lipid Sci. Technol., 116, 1400, 10.1002/ejlt.201300506 Sabetay, 1956, Cinq années de perhydrosqualène, Rev. Fr. Corps Gras, 1, 26 Bang, 2014, Hydrating cosmetic composition comprising glycerin, alkanediol, emollient, and surfactant, L'Oreal Fr. García-Trenco, 2017, Pd2Ga-Based Colloids as Highly Active Catalysts for the Hydrogenation of CO2 to Methanol, ACS Catal., 7, 1186, 10.1021/acscatal.6b02928 Méhault, 2021, Multiphase alternated slug flows: Conditions to avoid coalescence and characterization of mass transfer between droplets, Chem. Eng. J., 407, 127215, 10.1016/j.cej.2020.127215 Gary, 2015, Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates, Chem. Mater., 27, 1432, 10.1021/acs.chemmater.5b00286 Pandarus, 2015, Heterogeneously Catalyzed Hydrogenation of Squalene to Squalane under Mild Conditions, ChemCatChem, 7, 2071, 10.1002/cctc.201402668 A. Kaiya, T. Nakamura, H. Wada, Highly pure squalane, raw material for pharmaceuticals and cosmetics prepared by using the same and method for producing the same, Nippon Petrochemicals Compagny, Inc., Japan, 2000, US Patent 6,165,481. Dale, 1956, Double bond migration and dehydrogenation of squalene on hydrogenation catalysts, Acta Chem. Scand., 10, 439, 10.3891/acta.chem.scand.10-0439 Ciriminna, 2014, Catalytic Hydrogenation of Squalene to Squalane, Org. Process Res. Dev., 18, 1110, 10.1021/op5002337 García, 2019, Continuous Production of Squalane Using 3D Printed Catalytic Supports, Johnson Matthey, Technol. Rev., 63, 191 Contreras, 2019, Effect of mesoporous carbon support nature and pretreatments on palladium loading, dispersion and apparent catalytic activity in hydrogenation of myrcene, J. Catal., 372, 226, 10.1016/j.jcat.2019.02.034 Rivera-Cárcamo, 2021, Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes, Catal. Sci. Technol., 11, 984, 10.1039/D0CY01938K Serp, 2021, Cooperativity in supported metal single atom catalysis, Nanoscale, 13, 5985, 10.1039/D1NR00465D Pandarus, 2017, Solvent-Free Chemoselective Hydrogenation of Squalene to Squalane, ACS Omega, 2, 3989, 10.1021/acsomega.7b00625 Simescu-Lazar, 2015, Direct coating of carbon-supported catalysts on monoliths and foams – Singular behaviour of Pd/MWCNT, Appl. Catal., A, 508, 45, 10.1016/j.apcata.2015.09.042 EDM Précision, 69100 Villeurbanne, France. https://www.edm-precision-lyon.fr/ (accessed 22 January 2022). Soni, 2016, Palladium-Nanoparticles-Intercalated Montmorillonite Clay: A Green Catalyst for the Solvent-Free Chemoselective Hydrogenation of Squalene, ChemCatChem, 8, 1763, 10.1002/cctc.201600210 Kim, 1997, Solubility of Hydrogen in Octane, 1-Octanol, and Squalane, J. Chem. Eng. Data, 42, 214, 10.1021/je960268z Comuñas, 2013, Reference Correlation of the Viscosity of Squalane from 273 to 373 K at 0.1 MPa, J. Phys. Chem. Ref. Data, 42, 033101, 10.1063/1.4812573 Mylona, 2014, Reference Correlations for the Density and Viscosity of Squalane from 273 to 473 K at Pressures to 200 MPa, J. Phys. Chem. Ref. Data, 43, 013104, 10.1063/1.4863984 Anxionnaz, 2008, Heat exchanger/reactors (HEX reactors): Concepts, technologies: State-of-the-art, Chem. Eng. Process.: Process Intensification, 47, 2029, 10.1016/j.cep.2008.06.012 N. Kockmann, M. Gottsponer, Heat Transfer Limitations of Gas-Liquid Exothermic Reactions in Microchannels, ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, 2010, pp. 193-199. https://doi.org/10.1115/fedsm-icnmm2010-30389. Plouffe, 2014, From Batch to Continuous Chemical Synthesis—A Toolbox Approach, Org. Process Res. Dev., 18, 1286, 10.1021/op5001918 Théron, 2014, Characterization of the performances of an innovative heat-exchanger/reactor, Chem. Eng. Process.: Process Intensification, 82, 30, 10.1016/j.cep.2014.04.005 Hessel, 2009, Novel Process Windows - Gate to Maximizing Process Intensification via Flow Chemistry, Chem. Eng. Technol., 32, 1655, 10.1002/ceat.200900474 Illg, 2010, Flow chemistry using milli- and microstructured reactors-from conventional to novel process windows, Bioorg. Med. Chem., 18, 3707, 10.1016/j.bmc.2010.03.073 Lavric, 2009, Advanced-FlowTM glass reactors for seamless scale-up, Chimica Oggi, 27, 45 Steiner, 2020, Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy, Org. Process Res. Dev., 24, 2208, 10.1021/acs.oprd.0c00239 Potdar, 2019, Scalability of 3D printed structured porous milli-scale reactors, Chem. Eng. J., 363, 337, 10.1016/j.cej.2019.01.082 Losey, 2001, Microfabricated Multiphase Packed-Bed Reactors: Characterization of Mass Transfer and Reactions, Ind. Eng. Chem. Res., 40, 2555, 10.1021/ie000523f Irfan, 2011, Heterogeneous Catalytic Hydrogenation Reactions in Continuous-Flow Reactors, ChemSusChem, 4, 300, 10.1002/cssc.201000354 Liedtke, 2016, External liquid solid mass transfer for solid particles transported in a milli-channel within a gas–liquid segmented flow, Chem. Eng. J., 287, 92, 10.1016/j.cej.2015.10.109 Ufer, 2011, Suspension catalysis in a liquid–liquid capillary microreactor, Chem. Eng. J., 167, 468, 10.1016/j.cej.2010.09.088 Salique, 2021, Continuous Hydrogenation: Triphasic System Optimization at Kilo Lab Scale Using a Slurry Solution, Front. Chem. Eng., 3, 701910, 10.3389/fceng.2021.701910 Avril, 2017, Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor, React Chem. Eng., 2, 180, 10.1039/C6RE00188B Kundra, 2021, Continuous Flow Hydrogenation of Flavorings and Fragrances Using 3D-Printed Catalytic Static Mixers, Ind. Eng. Chem. Res., 60, 1989, 10.1021/acs.iecr.0c05671 Lebl, 2022, Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers, Catal. Today, 383, 55, 10.1016/j.cattod.2020.07.046 Tourvieille, 2015, Milli-channel with metal foams under an applied gas–liquid periodic flow: External mass transfer performance and pressure drop, Chem. Eng. J., 267, 332, 10.1016/j.cej.2014.11.084 Tourvieille, 2015, Milli-channel with metal foams under an applied gas–liquid periodic flow: Flow patterns, residence time distribution and pulsing properties, Chem. Eng. Sci., 126, 406, 10.1016/j.ces.2014.11.059 Munirathinam, 2015, Supported Catalysis in Continuous-Flow Microreactors, Adv. Synth. Catal., 357, 1093, 10.1002/adsc.201401081 Ehrfeld Mikrotechnik https://ehrfeld.com/en/products/miprowar.html (accessed 30 November 2021).