Procesamiento de lenguaje natural para texto clínico en español: el caso de las listas de espera en Chile
Tài liệu tham khảo
Cómo funciona el Sistema de Salud en Chile, 2022
Informe CDD: Caracterización sociodemográfica y socioeconómica en la población asegurada inscrita. Gobierno de Chile. [Internet]. División de Desarrollo Institucional, Departamento de Estudios y Estadísticas; 2020 [citado el 23 de julio de 2022]. Disponible en: https://www.fonasa.cl/sites/fonasa/adjuntos/Informe_caracterizacion_poblacion_asegurada.
Estay, 2017, Desde el conflicto de listas de espera, hacia el fortalecimiento de los prestadores públicos de salud: Una propuesta para Chile, Cuad Med Soc., 57, 49
Cordero A, Valderrama S, Duran L, Santelices P, Olave M, Jiron P, et al., Norma técnica para el registro de las listas de espera. 2016; Disponible en: https://www.minsal.cl/sites/default/files/files/Nueva%20Norma%20de%20Listas%20de%20Espera%202011.pdf.
¿Qué es el AUGE o GES? - ¿Qué es el AUGE o GES? [Internet]. Preguntas Frecuentes. Superintendencia de Salud, Gobierno de Chile. [citado el 18 de julio de 2022]. Disponible en: http://www.supersalud.gob.cl/consultas/667/w3-article-4605.html.
Garantías Explícitas en Salud (GES) [Internet]. Orientación en Salud. Superintendencia de Salud, Gobierno de Chile. [citado el 18 de julio de 2022]. Disponible en: http://www.supersalud.gob.cl/difusion/665/w3-propertyvalue-1962.html.
Martinez, 2019, Prolonged wait time is associated with increased mortality for Chilean waiting list patients with non-prioritized conditions, BMC Public Health., 19, 233, 10.1186/s12889-019-6526-6
MINSAL. Estado de Situacion Personas Fallecidas en Listas de Espera No-GES y Garantias Retrasadas GES [Internet]. 2017 [citado el 25 de julio de 2022]. Disponible en: https://www.minsal.cl/wp-content/uploads/2018/01/Informe-Final-Comision-Asesora-LE-y-Garantias-Retrasadas-GES-17082017_.pdf.
MINSAL. Glosa 06 - Lista de espera no GES y garantías de oportunidad GES retrasadas [Internet]. 2021 [citado el 23 de julio de 2022]. Disponible en: https://www.minsal.cl/wp-content/uploads/2021/05/ORD-1204-DIGERA-Glosa-06.pdf.
Villena, 2019, Rev Med Chile., 147, 1229, 10.4067/s0034-98872019001001229
Dalianis, 2018
Báez P, Villena F, Rojas M, Durán M, Dunstan J. The Chilean Waiting List Corpus: a new resource for clinical named entity recognition in Spanish. In: Proceedings of the 3rd Clinical Natural Language Processing Workshop. Association for Computational Linguistics. 2020. p.291-300. doi 10.18653/v1/2020.clinicalnlp-1.32.
Báez, 2022, Automatic Extraction of Nested Entities in Clinical Referrals in Spanish, ACM Trans Comput Healthc Health., 3, 1, 10.1145/3498324
Jurafsky D, Martin JH. Speech and Language Processing [Internet]. Third Ed. draft. 2022 [citado el 18 de julio de 2022]. Disponible en: https://web.stanford.edu/∼jurafsky/slp3/ed3book_jan122022.pdf.
Periñán Pascual, 2009, Bringing Role and Reference Grammar to natural language understanding, Proces Leng Nat., 265
Choi, 2020, Introduction to Machine Learning, Neural Networks, and Deep Learning, Transl Vis Sci Technol., 9, 14
Gerbino E, Baggia P, Giachin E, Rullent C. Analysis and Evaluation of Spontaneous Speech Utterances in Focused Dialogue Contexts. Proc. of ESCA Workshop. 1995.
Savoy, 2010, Information Retrieval
Sinhal, 2014, Machine translation approaches and design aspects, IOSR J Comput Eng., 16, 22, 10.9790/0661-16122225
Dabre, 2020, A Survey of Multilingual Neural Machine Translation, ACM Comput Surv., 53, 99, 10.1145/3406095
Oronoz, 2015, On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions, J Biomed Inform., 56, 318, 10.1016/j.jbi.2015.06.016
Báez, 2021, Construcción de recursos de texto para la identificación automática de información clínica en narrativas no estructuradas. [Construction of text resources for automatic identification of clinical information in unstructured narratives], Rev Med Chil., 149, 1014, 10.4067/s0034-98872021000701014
Névéol, 2018, Clinical Natural Language Processing in languages other than English: opportunities and challenges, J Biomed Semantics, 9, 12, 10.1186/s13326-018-0179-8
Koleck, 2019, Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review, J Am Med Inform Assoc., 26, 364, 10.1093/jamia/ocy173
Jagannatha, 2019, Overview of the First Natural Language Processing Challenge for Extracting Medication. Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0), Drug Saf., 42, 99, 10.1007/s40264-018-0762-z
Chen, 2020, Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning, J Am Med Inform Assoc., 27, 56, 10.1093/jamia/ocz141
Weegar, 2015, Finding Cervical Cancer Symptoms in Swedish Clinical Text using a Machine Learning Approach and NegEx, AMIA Annu Symp Proc, 2015, 1296
Weegar, 2018, Mining events preceding a cancer diagnosis, En IEEE Computer Society, 295
Orooji, 2017, Using of natural language processing techniques in suicide research, Emerg Sci J., 1, 89, 10.28991/esj-2017-01120
Levis, 2020, Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models, Psychol Med., 1
Henry, 2020, The 2019 National Natural language processing (NLP) Clinical Challenges (n2c2)/Open Health NLP (OHNLP) shared task on clinical concept normalization for clinical records, J Am Med Inform Assoc., 27, 1529
Blanco, 2020, Boosting ICD multi-label classification of health records with contextual embeddings and label-granularity, Comput Methods Programs Biomed., 188, 105264, 10.1016/j.cmpb.2019.105264
Dunstan J, Maass A, Tobar F. Una mirada a la era de los datos. 1 ed. Ed. Universitaria SA; 2022. 134 p.
Fort, 2016
Pérez, 2017, Semi-supervised medical entity recognition: A study on Spanish and Swedish clinical corpora, J Biomed Inform., 71, 16, 10.1016/j.jbi.2017.05.009
Goutte, 2005, A Probabilistic Interpretation of Precision, Recall and F-Score with Implication for Evaluation
Schuyler, 1993, The UMLS Metathesaurus: representing different views of biomedical concepts, Bull Med Libr Assoc., 81, 217
Campillos-Llanos, 2022, Medical Lexicon for Spanish, (MedLexSp)
Campillos-Llanos, 2019, First steps towards building a medical Lexicon for Spanish with linguistic and semantic information, 152
Villena F, Báez P, Peñafiel S, Rojas M, Paredes I, Dunstan J. Automatic Support System for Tumor Coding in Pathology Reports in Spanish. SSRN Electron J [Internet]. 2021. doi:10.2139/ssrn.3982259. Disponible en: https://www.ssrn.com/abstract=3982259.
Memoria de Gestión FALP [Internet]. Fundación Arturo López Pérez. 2017 [citado el 18 de julio de 2022]. Disponible en: https://www.institutoncologicofalp.cl/fundacion/memoria-falp/.
Ramos, 2020, Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis, IEEE Access., 8, 106198, 10.1109/ACCESS.2020.3000075
Flores, 2021, Active Learning for Biomedical Text Classification Based on Automatically Generated Regular Expressions, IEEE Access., 9, 38767, 10.1109/ACCESS.2021.3064000
Flores, 2020, CREGEX: A Biomedical Text Classifier Based on Automatically Generated Regular Expressions, IEEE Access., 8, 29270, 10.1109/ACCESS.2020.2972205
Flores, 2019, FREGEX: A Feature Extraction Method for Biomedical Text Classification using Regular Expressions, Annu Int Conf IEEE Eng Med Biol Soc., 2019, 6085
Figueroa, 2014, Identifying and extracting patient smoking status information from clinical narrative texts in Spanish, Annu Int Conf IEEE Eng Med Biol Soc., 2014, 2710
Figueroa, 2016, Extracting Information from Electronic Medical Records to Identify the Obesity Status of a Patient Based on Comorbidities and Bodyweight Measures, J Med Syst., 40, 191, 10.1007/s10916-016-0548-8
Lecaros, 2021, The incidence of psoriasis in Chile: an analysis of the National Waiting List Repository, Clin Exp Dermatol., 46, 1262, 10.1111/ced.14713
Figueroa-Barra, 2022, Automatic language analysis identifies and predicts schizophrenia in first-episode of psychosis, Schizophrenia (Heidelb)., 8, 53, 10.1038/s41537-022-00259-3
Zeng, 2011, Characterizing clinical text and sublanguage: A case study of the VA clinical notes, J Health Med Informat S., S3
Bannour, 2022, Privacy-preserving mimic models for clinical named entity recognition in French, J Biomed Inform., 130, 104073, 10.1016/j.jbi.2022.104073
Criado-Perez, 2020