Procédures de comparaisons multiples : principes et limites Applications à l’étude différentielle de l’expression transcriptionnelle par puces à ADN

Revue d'Épidémiologie et de Santé Publique - Tập 52 - Trang 523-537 - 2004
C. Dalmasso1,2, P. Broët1,2,3, T. Moreau1
1Inserm U472, 16, avenue Paul-Vaillant-Couturier, 94807 Villejuif
2Institut Curie, 26, rue d’Ulm, 75248 Paris Cedex 05
3Faculté de Médecine — Université Paris XI, 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre

Tài liệu tham khảo

Hochberg, 1987 Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc Ser B, 57, 289 Storey, 2001, A direct approach to false discovery rates, J R Stat Soc Ser B, 64, 479, 10.1111/1467-9868.00346 Storey, 2003, The positive False Discovery Rate: a Bayesian interpretation and the q-value, Ann Stat, 31, 2013, 10.1214/aos/1074290335 Storey JD. False Discovery Rates: theory and applications to DNA microarrays. PhD thesis. Department of Statistics, Stanford University, 2002. Storey, 2003, Statistical significance for genome-wide studies, Proc Natl Acad Sci, 100, 9440, 10.1073/pnas.1530509100 Supplement Chipping Forecast II. Nature Genet 2002 ; 32. Hedenfalk, 2001, Gene-expression profiles in hereditary breast cancer, N Engl J Med, 344, 539, 10.1056/NEJM200102223440801 Bland, 1998 Genovese, 2002, Operating characteristics and extensions of the false discovery rate procedure, J R Stat Soc Ser B, 64, 499, 10.1111/1467-9868.00347 Wright, 1992, Adjusted P-values for simultaneous inference, Biometrics, 48, 1005, 10.2307/2532694 Westfall, 1993 Sidák, 1967, Rectangular confidence regions for the means of multivariate normal distributions, J Am Stat Assoc, 62, 626, 10.2307/2283989 Marcus, 1976, On closed testing procedures with special reference to ordered analysis of variance, Biometrika, 63, 655, 10.1093/biomet/63.3.655 Holm, 1979, A simple sequentially rejective multiple test procedure, Scand J Stat, 6, 65 Ge, 2003, Resampling-based multiple testing for microarray data analysis, Test, 12, 1, 10.1007/BF02595811 Dudoit, 2000, Statistical methods for identifying differentially expressed genes in replicated CDNA microarray experiment, Statistica Sinica, 12, 111 Hochberg, 1988, A sharper Bonferroni procedure for multiple tests of significance, Biometrika, 75, 800, 10.1093/biomet/75.4.800 Benjamini, 2001, The control of the false discovery rate in multiple testing under dependency, Ann Stat, 29, 1165, 10.1214/aos/1013699998 Benjamini, 2000, On the “adaptative” control of the false discovery rate, J Educ Behav Stat, 25, 60, 10.3102/10769986025001060 Benjamini Y, Krieger A, Yekutieli D. Two-staged linear step-up FDR controlling procedure. Research paper 01-3, Dept. of Statistics and OR. Tel Aviv University, 2001. Schweder, 1982, Plots of p-values to evaluate many tests simultaneously, Biometrika, 69, 493, 10.1093/biomet/69.3.493 Tusher, 2001, Significant analysis of microarray applied to the ionising radiation response, Proc Natl Acad Sci, 98, 5116, 10.1073/pnas.091062498 Chu G, Narasimhan B, Tibshirani R, Tusher V. SAM, significance analysis of microarrays, users guide and technical document. Technical report. Stanford University, 2001. http://www-stat.stanford.edu/∼tibs/SAM/index.html, 2001. Efron, 2001, Empirical Bayes analysis of a microarray experiment, J Am Stat Assoc, 96, 1151, 10.1198/016214501753382129 Dudoit, 2003, Multiple hypothesis testing in microarray experiments, Statistical Science, 18, 71, 10.1214/ss/1056397487 Pounds, 2004, Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values, Bioinformatics, 19, 1236, 10.1093/bioinformatics/btg148 Pounds, 2004, Improving false discovery rate estimation, Bioinformatics, 20, 1737, 10.1093/bioinformatics/bth160 Dalmasso, 2004, A simple procedure for estimating the false discovery rate, Bioinformatics Schena, 2000 Speed, 2003 Broët, 2002, Bayesian hierarchical model for identifying changes in gene expression from microarray experiments, J Comput Biol, 9, 671, 10.1089/106652702760277381 Broët, 2004, A mixture model-based strategy for selecting sets of genes in multiclass response microarray experiments, Bioinformatics, 10.1093/bioinformatics/bth285 Lee, 2000, Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations, Proc Natl Acad Sci, 97, 9834, 10.1073/pnas.97.18.9834 Pan, 2003, A mixture model approach to detecting differentially expressed genes with microarray data, Funct Integr Genomics, 3, 117, 10.1007/s10142-003-0085-7