Problems About Torsors over Regular Rings

Acta Mathematica Vietnamica - Tập 47 Số 1 - Trang 39-107 - 2022
Kęstutis Česnavičius1
1CNRS, Université Paris-Saclay, Laboratoire de mathématiques d’Orsay, Orsay, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Auslander, M, Goldman, O: The Brauer group of a commutative ring. Trans. Amer. Math. Soc. 97, 367–409 (1960). MR0121392 (22 #12130)

Asok, A, Hoyois, M, Wendt, M: Affine representability results in A1-homotopy theory, II: Principal bundles and homogeneous spaces. Geom. Topol. 22 (2), 1181–1225 (2018). MR3748687, https://doi.org/10.2140/gt.2018.22.1181

Asok, A, Hoyois, M, Wendt, M: Affine representability results in A1-homotopy theory III: Finite fields and complements. Algebr. Geom. 7 (5), 634–644 (2020). MR4156421, https://doi.org/10.14231/ag-2020-023

Alper, J: Adequate moduli spaces and geometrically reductive group schemes. Algebr. Geom. 1 (4), 489–531 (2014). MR3272912, https://doi.org/10.14231/AG-2014-022, See also https://arxiv.org/abs/1005.2398v2 for an updated post-publication version

Antieau, B, Williams, B: Topology and purity for torsors. Doc. Math. 20, 333–355 (2015). MR3398715

Baeza, R: Quadratic Forms over Semilocal Rings. Lecture Notes in Mathematics, vol. 655, p vi+ 199. Springer, Berlin (1978). MR0491773

Bass, H: Some problems in “classical” algebraic K-theory, pp 3–73. Springer, Berlin (1973). Lecture Notes in Math., Vol. 342, 0409606

Bass, H., Connell, E. H., Wright, D. L.: Locally polynomial algebras are symmetric algebras. Invent. Math. 38(3), 279–299 (1976/77). MR432626, https://doi.org/10.1007/BF01403135

Bouthier, A, Česnavičius, K: Torsors on loop groups and the Hitchin fibration. Available at 1908.07480v4 (2021)

Bayer-Fluckiger, E, First, UA., Parimala, R: On the Grothendieck–Serre conjecture for classical groups. Available at 1911.07666v2 (2020)

Bhatt, B: Algebraization and Tannaka duality. Camb. J. Math. 4 (4), 403–461 (2016). MR3572635, https://doi.org/10.4310/CJM.2016.v4.n4.a1

Bhatt, B, Halpern-Leistner, D: Tannaka duality revisited. Adv. Math. 316, 576–612 (2017). MR3672914, https://doi.org/10.1016/j.aim.2016.08.040

Borovoi, M, Kunyavskii, B: Formulas for the unramified Brauer group of a principal homogeneous space of a linear algebraic group. J. Algebra 225 (2), 804–821 (2000). MR1741563, https://doi.org/10.1006/jabr.1999.8153

Beauville, A, Laszlo, Y: Un lemme de descente. C. R. Acad. Sci. Paris Sér. I Math. 320(3), 335–340 (1995). MR1320381

Bosch, S, Lütkebohmert, W, Raynaud, M: Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, p x + 325. Springer, Berlin (1990). MR1045822 (91i:14034)

Bhatwadekar, S.M., Rao, R.A.: On a question of Quillen. Trans. Amer. Math. Soc. 279(2), 801–810 (1983). MR709584

Balwe, C, Sawant, A: A1-connectedness in reductive algebraic groups. Trans. Amer. Math. Soc. 369 (8), 5999–6015 (2017). MR3646787, https://doi.org/10.1090/tran/7090

Conrad, B, Gabber, O, Prasad, G: Pseudo-Reductive Groups. New Mathematical Monographs, 2nd edn., vol. 26, p xxiv+ 665. Cambridge University Press, Cambridge (2015). MR3362817

Chambert-Loir, A, Nicaise, J, Sebag, J: Motivic integration. Progress in Mathematics, vol. 325, p xx+ 526. Birkhäuser/Springer, New York (2018). MR3838446, https://doi.org/10.1007/978-1-4939-7887-8

Conrad, B: Reductive group schemes. In: Autour des schémas en groupes. Vol. I. Panor. Synthèses. MR3362641, vol. 42/43, pp 93–444. Soc. Math., France (2014)

Chernousov, V, Panin, I: Purity of G2-torsors. C. R. Math. Acad. Sci. Paris 345(6), 307–312 (2007). MR2359087, https://doi.org/10.1016/j.crma.2007.07.018

Chernousov, V, Panin, I: Purity for Pfister forms and F4-torsors with trivial g3 invariant. J. Reine Angew. Math. 685, 99–104 (2013). MR3181565, https://doi.org/10.1515/crelle-2012-0018

Colliot-Thélène, J-L: Formes quadratiques sur les anneaux semi-locaux réguliers. Bull. Soc. Math. France Mém. 59, 13–31 (1979). Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977), 532002

Colliot-Thélène, J-L: Résolutions flasques des groupes réductifs connexes. C. R. Math. Acad. Sci. Paris 339(5), 331–334 (2004). MR2092058, https://doi.org/10.1016/j.crma.2004.06.012

Colliot-Thélène, J-L, Hoobler, RT., Kahn, B: The Bloch-Ogus-Gabber theorem. In: Algebraic K-theory (Toronto, ON 1996) Fields Inst. Commun. MR1466971, vol. 16, pp 31–94. Amer. Math. Soc., Providence (1997)

Colliot-Thélène, J.-L., Harari, D., Skorobogatov, A. N.: Compactification équivariante d’un tore (d’après Brylinski et Künnemann). Expo. Math. 23(2), 161–170 (2005). MR2155008, https://doi.org/10.1016/j.exmath.2005.01.016

Colliot-Thélène, J-L, Ojanguren, M: Espaces principaux homogènes localement triviaux. Inst. Hautes Études Sci. Publ. Math. 75, 97–122 (1992). MR1179077

Colliot-Thélène, J-L, Sansuc, J-J: Cohomologie des groupes de type multiplicatif sur les schémas réguliers. C. R. Acad. Sci. Paris Sér. A-B 287(6), A449–A452 (1978). MR510771

Colliot-Thélène, J.-L., Sansuc, J.-J.: Fibrés quadratiques et composantes connexes réelles. Math. Ann. 244(2), 105–134 (1979). MR550842, https://doi.org/10.1007/BF01420486

Colliot-Thélène, J-L, Sansuc, J-J: Principal homogeneous spaces under flasque tori: applications. J. Algebra 106(1), 148–205 (1987). MR878473, https://doi.org/10.1016/0021-8693(87)90026-3

Česnavičius, K: Purity for the Brauer group. Duke Math. J. 168 (8), 1461–1486 (2019). MR3959863, https://doi.org/10.1215/00127094-2018-0057

Česnavičius, K: Grothendieck–Serre in the quasi-split unramified case. Forum Math. Pi 10, e9, 30 pp (2022). https://doi.org/10.1017/fmp.2022.5

Česnavičius, K, Scholze, P: Purity for flat cohomology. Available at 1912.10932v2 (2021)

Danilov, V. I.: The geometry of toric varieties. Uspekhi Mat. Nauk 33(2(200)), 85–134, 247 (1978). MR495499

Deligne, P, Milne, JS., Ogus, A, Shih, K-y: Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, vol. 900, p ii+ 414. Springer, Berlin (1982). MR654325

Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. 4, 228 (1960). MR0217083 (36 #177a)

Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math. 8, 222 (1961). MR0163909 (29 #1208)

Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math. 11, 167 (1961). MR0217085 (36 #177c)

Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math. 24, 231 (1965). MR0199181 (33 #7330)

Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. 28, 255 (1966). MR0217086 (36 #178)

Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32, 361 (1967). MR0238860 (39 #220)

Elmanto, E, Kulkarni, G, Wendt, M: $\mathbb {A}^{1}$-connected components of classifying spaces and purity for torsors. Available at https://arxiv.org/abs/2104.06273v1 (2021)

Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (3), 349–366 (1983). MR718935 (85g:11026a), https://doi.org/10.1007/BF01388432

Faltings, G, Chai, C-L: Degeneration of Abelian Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, p xii+ 316. Springer, Berlin (1990). MR1083353 (92d:14036)

Fedorov, R: Affine Grassmannians of group schemes and exotic principal bundles over A1. Amer. J. Math. 138 (4), 879–906 (2016). MR3538146, https://doi.org/10.1353/ajm.2016.0036

Fedorov, R: On the Grothendieck–Serre Conjecture about principal bundles and its generalizations. Algebra Number Theory, to appear. Available at 1810.11844v2 (2021)

Fedorov, R: On the Grothendieck–Serre conjecture on principal bundles in mixed characteristic. Trans. Amer. Math. Soc. 375(01), 559–586 (2021). MR4358676, https://doi.org/10.1090/tran/8490

Fedorov, R: On the purity conjecture of Nisnevich for torsors under reductive group schemes. Available at 2109.10332 (2021)

First, UA.: An 8-Periodic Exact Sequence of Witt Groups of Azumaya Algebras with Involution. Available at 1910.03232v2 (2021)

Fedorov, R, Panin, I: A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields. Publ. Math. Inst. Hautes Études Sci. 122, 169–193 (2015). MR3415067, https://doi.org/10.1007/s10240-015-0075-z

Ferrand, D, Raynaud, M: Fibres formelles d’un anneau local noethérien. Ann. Sci. École Norm. Sup. (4) 3, 295–311 (1970). MR0272779

González-Avilés, CD.: Flasque resolutions of reductive group schemes. Cent. Eur. J. Math. 11(7), 1159–1176 (2013). MR3085137, https://doi.org/10.2478/s11533-013-0235-7

Gabber, O: Some theorems on Azumaya algebras. In: The Brauer group. Sem., Les Plans-sur-Bex (1980). Lecture Notes in Math. MR611868 (83d:13004), vol. 844, pp 129–209. Springer, Berlin (1981)

Gabber, O: Gersten’s conjecture for some complexes of vanishing cycles. Manuscripta Math. 85(3–4), 323–343 (1994). MR1305746, https://doi.org/10.1007/BF02568202

Gabber, O.: On space filling curves and Albanese varieties. Geom. Funct. Anal. 11(6), 1192–1200 (2001). MR1878318, https://doi.org/10.1007/s00039-001-8228-2

Gabber, O: On purity theorems for vector bundles. Int. Math. Res. Not. 15, 783–788 (2002). MR1891173, https://doi.org/10.1155/S1073792802110087

Gille, P.: Torseurs sur la droite affine. Transform. Groups 7(3), 231–245 (2002). MR1923972, https://doi.org/10.1007/s00031-002-0012-3

Gille, P.: Errata: “Torsors on the affine line” (French) [Transform. Groups 7 (2002), no. 3, 231–245; MR1923972]. Transform. Groups 10(2), 267–269 (2005). MR2195603, https://doi.org/10.1007/s00031-005-1010-z

Gille, P: Le problème de Kneser-Tits. Astérisque 326, Exp. No. 983, vii, 39–81 (2010) (2009). Séminaire Bourbaki. Vol. 2007/2008. 2605318

Gille, P: When is a reductive group scheme linear? Michigan Math. J., to appear. Available at https://arxiv.org/abs/2103.07305v3 (2021)

Giraud, J: Cohomologie non abélienne, p ix+ 467. Springer, Berlin (1971). MR0344253 (49 #8992)

Gabber, O, Ramero, L: Foundations for almost ring theory. preprint, arXiv version 13. Available at https://arxiv.org/abs/math/0409584v13 (2018)

Grothendieck, A: Torsion homologique et sections rationnelles. Seminaire Claude Chevalley 3(5), 1–29 (1958)

Grothendieck, A: Le groupe de Brauer. II. Théorie cohomologique. In: Dix Exposés sur la Cohomologie des Schémas. MR0244270 (39 #5586b), pp 67–87, North-Holland (1968)

Gros, M, Suwa, N: La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique. Duke Math. J. 57(2), 615–628 (1988). MR962522, https://doi.org/10.1215/S0012-7094-88-05727-4

Guo, N: The Grothendieck–Serre conjecture over semilocal Dedekind rings. Transform. Groups, to appear. Available at https://arxiv.org/abs/1902.02315v3 (2020)

Guo, N: The Grothendieck–Serre conjecture over valuation rings. Available at https://arxiv.org/abs/2008.02767v4 (2021)

Görtz, U, Wedhorn, T: Algebraic geometry I. Schemes—with examples and exercises. Springer Studium Mathematik—Master, 2nd edn., p vii+ 625. Springer, Spektrum (2020). MR4225278, https://doi.org/10.1007/978-3-658-30733-2

de Jong, A. J., He, X, Starr, JM: Families of rationally simply connected varieties over surfaces and torsors for semisimple groups. Publ. Math. Inst. Hautes Études Sci. 114, 1–85 (2011). MR2854858, https://doi.org/10.1007/s10240-011-0035-1

Haines, TJ., Lourenço, J, Richarz, T: On the normality of Schubert varieties: remaining cases in positive characteristic. Available at https://arxiv.org/abs/1806.11001v4 (2020)

Horrocks, G.: Projective modules over an extension of a local ring. Proc. London Math. Soc. (3) 14, 714–718 (1964). MR0169878

Hall, J, Rydh, D: Coherent Tannaka duality and algebraicity of Hom-stacks. Algebra Number Theory 13(7), 1633–1675 (2019). MR4009673, https://doi.org/10.2140/ant.2019.13.1633

Haines, TJ., Richarz, T: Normality and Cohen–Macaulayness of parahoric local models. J. Eur. Math. Soc. (JEMS), to appear. Available at https://arxiv.org/abs/1903.10585v4 (2021)

Kottwitz, RE.: Stable trace formula: elliptic singular terms. Math. Ann. 275(3), 365–399 (1986). MR858284, https://doi.org/10.1007/BF01458611

Lam, T. Y.: Serre’s Problem on Projective Modules. Springer Monographs in Mathematics, p xxii+ 401. Springer, Berlin (2006). MR2235330

Li, S: The Bass–Quillen conjecture for general groups in equal characteristic Mémoire de Master 2, Sorbonne Université (2021)

Lindel, H: On the Bass-Quillen conjecture concerning projective modules over polynomial rings. Invent. Math. 65(2), 319–323 (1981/82). MR641133, https://doi.org/10.1007/BF01389017

Lequain, Y, Simis, A: Projective modules over R[X1,⋯,Xn], R a Prüfer domain. J. Pure Appl. Algebra 18(2), 165–171 (1980). MR585221

Matsumura, H: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, 2nd edn., vol. 8, p xiv+ 320. Cambridge University Press, Cambridge (1989). MR1011461 (90i:13001)

Moret-Bailly, L: Un problème de descente. Bull. Soc. Math. France 124(4), 559–585 (1996). MR1432058

Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn., vol. 34, p xiv+ 292. Springer, Berlin (1994). MR1304906 (95m:14012), https://doi.org/10.1007/978-3-642-57916-5

Moser, L-F: Rational triviale Torseure und die Serre-Grothendiecksche Vermutung. Diplomarbeit, Mathematisches Institut der Ludwig-Maximilians Universität München (2008)

Nisnevich, Y.A.: Etale cohomology and arithmetic of semisimple groups. Thesis (Ph.D.)–Harvard University. ProQuest LLC, Ann Arbor, MI. MR2632405 (1982)

Nisnevich, YA.: Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind. C. R. Acad. Sci. Paris Sér. I Math. 299(1), 5–8 (1984). MR756297

Nisnevich, Y: Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional regular local rings. C. R. Acad. Sci. Paris Sér. I Math. 309(10), 651–655 (1989). MR1054270

Nisnevich, Y: Stratified canonical forms of matrix valued functions in a neighborhood of a transition point. Internat. Math. Res. Notices 10, 513–527 (1998). MR1634912, https://doi.org/10.1155/S1073792898000336

Oda, T: Convex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, p viii+ 212. Springer, Berlin (1988). An introduction to the theory of toric varieties; Translated from the Japanese. 922894

Ojanguren, M: Unités représentées par des formes quadratiques ou par des normes réduites. In: Algebraic K-theory, Part II (Oberwolfach, 1980). Lecture Notes in Math. MR689397, vol. 967, pp 291–299. Springer, Berlin (1982)

Ojanguren, M, Panin, I: A purity theorem for the Witt group. Ann. Sci. École Norm. Sup. (4) 32(1), 71–86 (1999). MR1670591, https://doi.org/10.1016/S0012-9593(99)80009-3

Ojanguren, M, Panin, I: Rationally trivial Hermitian spaces are locally trivial. Math. Z. 237(1), 181–198 (2001). MR1836777, https://doi.org/10.1007/PL00004859

Panin, I: Rationally isotropic quadratic spaces are locally isotropic. Invent. Math. 176(2), 397–403 (2009). MR2495767, https://doi.org/10.1007/s00222-008-0168-0

Panin, I. A.: Purity conjecture for reductive groups. Vestnik St. Petersburg Univ. Math. 43(1), 44–48 (2010). MR2662409, https://doi.org/10.3103/S1063454110010085

Panin, I: On Grothendieck-Serre conjecture concerning principal bundles. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures. MR3966763, pp 201–221. World Sci. Publ., Hackensack (2018)

Panin, I. A.: Nice triples and moving lemmas for motivic spaces. Izv. Math. 83(4), 796–829 (2019). MR3985694, https://doi.org/10.1070/IM8819

Panin, I. A.: Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field. Izv. Ross. Akad. Nauk Ser. Mat. 84 (4), 169–186 (2020). (Russian); English transl., Izv. Math. 84 (2020), no. 4, 780–795. 4133391, https://doi.org/10.4213/im8982

Panin, I. A.: Two purity theorems and the Grothendieck–Serre’s conjecture concerning principal G-bundles. Mat. Sb. 211(12), 123–142 (2020). MR4181078, https://doi.org/10.4213/sm9393

Parimala, S.: Failure of a quadratic analogue of Serre’s conjecture. Amer. J. Math. 100(5), 913–924 (1978). MR517136, https://doi.org/10.2307/2373953

Poonen, B: Bertini theorems over finite fields. Ann. of Math. (2) 160(3), 1099–1127 (2004). MR2144974, https://doi.org/10.4007/annals.2004.160.1099

Popescu, D: Polynomial rings and their projective modules. Nagoya Math. J. 113, 121–128 (1989). MR986438

Popescu, D: Letter to the editor: “General Néron desingularization and approximation” [Nagoya Math. J. 104 (1986), 85–115; MR0868439 (88a:14007)]. Nagoya Math. J. 118, 45–53 (1990). MR1060701, https://doi.org/10.1017/S0027763000002981

Popescu, D: Around general Neron desingularization. J. Algebra Appl. 16(4), 1750072, 10 (2017). MR3635121

Popescu, D: On a question of Swan. Algebr. Geom. 6(6), 716–729 (2019). MR4009178

Panin, I, Pimenov, K: Rationally isotropic quadratic spaces are locally isotropic: II. Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday. MR2804263, 515–523 (2010)

Panin, I., Pimenov, K.: Rationally isotropic quadratic spaces are locally isotropic. III. Algebra i Analiz 27(6), 234–241 (2015). English transl., St. Petersburg Math. J. 27 (2016), no. 6, 1029–1034. MR3589229, https://doi.org/10.1090/spmj/1433

Pappas, G., Rapoport, M.: Twisted loop groups and their affine flag varieties. Adv. Math. 219(1), 118–198 (2008). With an appendix by T. Haines and Rapoport. MR2435422, https://doi.org/10.1016/j.aim.2008.04.006

Panin, I., Stavrova, A., Vavilov, N.: On Grothendieck-Serre’s conjecture concerning principal G-bundles over reductive group schemes: I. Compos. Math. 151 (3), 535–567 (2015). MR3320571, https://doi.org/10.1112/S0010437X14007635

Quillen, D: Higher algebraic K-theory. I. In: Algebraic K-theory, I: Higher K-theories. Proc. Conf., Battelle Memorial Inst., Seattle, Wash. (1972). MR0338129, pp 85–147. Lecture Notes in Math., Vol. 341. Springer, Berlin (1973)

Quillen, D: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976). MR0427303, https://doi.org/10.1007/BF01390008

Raghunathan, M. S.: Principal bundles on affine space and bundles on the projective line. Math. Ann. 285(2), 309–332 (1989). MR1016097, https://doi.org/10.1007/BF01443521

Rao, Ravi A.: On projective $R_{f_{1}{\cdots } f_{t}}$-modules. Amer. J. Math. 107(2), 387–406 (1985). MR784289

Rao, R.A.: The Bass-Quillen conjecture in dimension three but characteristic ≠ 2, 3 via a question of A. Suslin. Invent. Math. 93(3), 609–618 (1988). MR952284

Raynaud, M: Faisceaux amples sur les schémas en groupes et les espaces homogènes. Lecture Notes in Mathematics, vol. 119, p ii+ 218. Springer, Berlin (1970). MR0260758 (41 #5381)

Roitman, M: On projective modules over polynomial rings. J. Algebra 58(1), 51–63 (1979). MR535842, https://doi.org/10.1016/0021-8693(79)90188-1

Raghunathan, M. S., Ramanathan, A.: Principal bundles on the affine line. Proc. Indian Acad. Sci. Math. Sci. 93(2–3), 137–145 (1984). MR813075, https://doi.org/10.1007/BF02840656

Scully, S: The Artin-Springer theorem for quadratic forms over semi-local rings with finite residue fields. Proc. Amer. Math. Soc. 146(1), 1–13 (2018). MR3723116, https://doi.org/10.1090/proc/13744

Serre, J.-P.: Espaces fibrés algébriques. Seminaire Claude Chevalley 3(1), 1–37 (1958)

Serre, J-P: Galois cohomology. Springer Monographs in Mathematics. Corrected reprint of the 1997 English edition, p x + 210. Springer, Berlin (2002). Translated from the French by Patrick Ion and revised by the author. MR1867431 (2002i:12004)

Grothendieck, A: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 4. Séminaire de Géométrie Algébrique du Bois Marie, 1962; Augmenté d’un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud]; With a preface and edited by Yves Laszlo; Revised reprint of the 1968 French original/ Société Mathématique de France, Paris, x + 208. MR2171939 (2005)

Gille, P, Polo, P (eds.): Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes/ Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 7. Société Mathématique de France, Paris (2011). Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64]; A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Revised and annotated edition of the 1970 French original. MR2867621

Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, vol. 152. Springer, Berlin. ix+ 654, MR0274459 (43 #223b) (1970)

Gille, P, Polo, P (eds.): Schémas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 8. Société Mathématique de France, Paris (2011). Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64]; A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Revised and annotated edition of the 1970 French original. MR2867622

Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics, vol. 305. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Springer, Berlin. vi+ 640. MR0354654 (50 #7132) (1973)

de Jong, A.J., et al.: The Stacks Project. Available at http://stacks.math.columbia.edu

Suslin, A. A.: Projective modules over polynomial rings are free. Dokl. Akad. Nauk SSSR 229(5), 1063–1066 (1976). MR0469905

Swan, R.G.: Projective modules over Laurent polynomial rings. Trans. Amer. Math. Soc. 237, 111–120 (1978). MR0469906, https://doi.org/10.2307/1997613

Swan, R.G.: On seminormality. J. Algebra 67(1), 210–229 (1980). MR595029, https://doi.org/10.1016/0021-8693(80)90318-X

Swan, R.G.: A simple proof of Gabber’s theorem on projective modules over a localized local ring. Proc. Amer. Math. Soc. 103(4), 1025–1030 (1988). MR954977, https://doi.org/10.2307/2047079

Swan, R.G.: Néron-Popescu desingularization. In: Algebra and geometry (Taipei, 1995). Lect. Algebra Geom. MR1697953 (2000h:13006), vol. 2, pp 135–192. Int. Press, Cambridge (1998)

Teissier, B: Résultats récents sur l’approximation des morphismes en algèbre commutative (d’après André, Artin, Popescu et Spivakovsky). Astérisque 227, Exp. No. 784, 4, 259–282 (1995). Séminaire Bourbaki, vol. 1993/94. MR1321650

Thomason, R. W.: Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes. Adv. in Math. 65(1), 16–34 (1987). MR893468

Tsybyshev, A. E.: A step toward the non-equicharacteristic Grothendieck-Serre conjecture. Algebra i Analiz 31(1), 246–254 (2019). (Russian, with Russian summary); English transl., St. Petersburg Math. J. 31 (2020), no. 1, 181–187. MR3932824, https://doi.org/10.1090/spmj/1591

Temkin, M., Tyomkin, I.: Ferrand pushouts for algebraic spaces. Eur. J. Math. 2(4), 960–983 (2016). MR3572553, https://doi.org/10.1007/s40879-016-0115-3

Vasiu, A.: Extension theorems for reductive group schemes. Algebra Number Theory 10(1), 89–115 (2016). MR3463037, https://doi.org/10.2140/ant.2016.10.89

Yengui, I.: The Hermite ring conjecture in dimension one. J. Algebra 320(1), 437–441 (2008). MR2417998, https://doi.org/10.1016/j.jalgebra.2008.02.007

Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. In: Geometry of moduli spaces and representation theory. IAS/Park City Math. Ser. MR3752460, vol. 24, pp 59–154. Amer. Math. Soc., Providence, RI (2017)