Probing the self-diffusion process in Aluminium

Journal of Molecular Modeling - Tập 28 - Trang 1-8 - 2021
Junais Habeeb Mokkath1
1Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, Kuwait

Tóm tắt

An in-depth understanding of the diffusion process in liquid metals is a key to design and engineering new high-performance materials. In this study, using molecular dynamics simulations supplemented with the embedded atom potential, we investigate/compare the self-diffusion process in liquid Aluminium. To understand the self-diffusion process, we analyse the radial distribution functions, velocity distributions, mean square displacements, and self-diffusion coefficients at various temperatures well above the melting temperature of Aluminium in the temperature range of 1000 K to 1800 K. As a key result, in both the $$\alpha$$ and $$\beta$$ phases, the self-diffusion coefficients show a non-linear variation with rise in temperatures in the range of 1000 K to 1200 K. From 1300 K to 1800 K, the self-diffusion coefficients increase more or less monotonically with rise in temperature. We found that a higher temperature in the range of 1300 K to 1800 K leads to a greater self-diffusion coefficient, suggesting the more violent movement of the atoms around their equilibrium positions. The results presented in this work can help to understand the differences in the self-diffusion process in the technologically relevant Al phases.

Tài liệu tham khảo

Steam AE, Irish EM, Eyring H (1940) Theory of diffusion in liquids. The Journal of Physical Chemistry 44:981–995 Liang Y (2018). In: White WM (ed) Encyclopedia of geochemistry: A comprehensive reference source on the chemistry of the Earth. Springer International Publishing, Cham, pp 363–375 Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia 48:279–306 Meyer A, Petry W, Koza M, Macht M-P (2003) Fast diffusion in ZrTiCuNiBe melts. Applied Physics Letters 83:3894–3896 Mei J, Davenport JW (1990) Molecular-dynamics study of self-diffusion in liquid transition metals. Phys Rev B 42:9682–9684 Bogicevic A, Hansen LB, Lundqvist BI (1997) Simulations of atomic structure, dynamics, and self-diffusion in liquid Au. Phys Rev E 55:5535–5545 Chauhan A, Ravi R, Chhabra R (2000) Self-diffusion in liquid metals. Chemical Physics 252:227–236 Mantina M, Wang Y, Arroyave R, Chen LQ, Liu ZK, Wolverton C (2008) First-principles calculation of self-diffusion coefficients. Phys Rev Lett 100:215901 Brooks CL (1989) Computer simulation of liquids. Journal of Solution Chemistry 18:99–99 Protopapas P, Andersen HC, Parlee NAD (1973) Theory of transport in liquid metals. I. Calculation of self-diffusion coefficients. The Journal of Chemical Physics 59:15–25 Dzugutov M (1996) A universal scaling law for atomic diffusion in condensed matter. Nature 381:137–139 Dorward R, Pritchett T (1988) Advanced aluminium alloys for aircraft and aerospace applications. Materials and Design 9:63–69 Alemany MMG, Gallego LJ, González DJ (2004) Kohn-Sham ab initio molecular dynamics study of liquid Al near melting. Phys Rev B 70:134206 Cherne F III, Deymier P (2001) Calculation of the transport properties of liquid aluminum with equilibrium and non-equilibrium molecular dynamics. Scripta Materialia 45:985–991 Kargl F, Weis H, Unruh T, Meyer A (2012) Self diffusion in liquid aluminium. Journal of Physics: Conference Series 340:012077 Jakse N, Pasturel A (2013) Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics. Scientific Reports 3:3135 Kresse G (1995) Ab initio molecular dynamics for liquid metals. J Non-Cryst Solids 192–193:222–229. Structure of Non-Crystalline Materials 6 Hoshino K (2009) Structure of liquid metals byab initiomolecular-dynamics simulations. Journal of Physics: Condensed Matter 21:474212 Belashchenko DK (2012) Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth. Russian Journal of Physical Chemistry A 86:779–790 Lë Y, Cheng H, Chen M (2012) A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals. The Journal of Chemical Physics 136:214505 Okita S, Verestek W, Sakane S, Takaki T, Ohno M, Shibuta Y (2017) Molecular dynamics simulations investigating consecutive nucleation, solidification and grain growth in a twelve-million-atom Fe-system. J Cryst Growth 474:140–145. The 8th International Workshop on Modeling in Crystal Growth Louzguine-Luzgin DV, Belosludov R, Saito M, Kawazoe Y, Inoue A (2008) Glass-transition behavior of Ni: Calculation, prediction, and experiment. Journal of Applied Physics 104:123529 Kirova EM, Norman GE, Pisarev VV (2019) Simulation of the glass transition of a thin aluminum melt layer at ultrafast cooling under isobaric conditions. JETP Letters 110:359–363 Shibuta Y, Sakane S, Miyoshi E, Okita S, Takaki T, Ohno M (2017) Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nature Communications 8:10 Wilde G, Sebright J, Perepezko J (2006) Bulk liquid undercooling and nucleation in gold. Acta Materialia 54:4759–4769 Ju YY, Zhang Q-M, Gong Z-Z, Ji G-F (2013) Molecular dynamics simulation of self-diffusion coefficients for liquid metals. Chinese Physics B 22:083101 González DJ, González LE, López JM, Stott MJ (2002) Dynamical properties of liquid Al near melting: An orbital-free molecular dynamics study. Phys Rev B 65:184201 Foiles SM (1985) Application of the embedded-atom method to liquid transition metals. Phys Rev B 32:3409–3415 Foiles SM, Adams JB (1989) Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Phys Rev B 40:5909–5915 Han XJ, Wang JZ, Chen M, Guo ZY (2004) Molecular dynamics simulation of thermophysical properties of undercooled liquid cobalt. Journal of Physics: Condensed Matter 16:2565–2574 Zahid F, Bhuiyan GM, Sultana S, Khaleque MA, Rashid R, Rahman SMM (1999) Investigations of the static and dynamic properties of liquid less simple metals. Physica Status Solidi (b) 215:987–998 Bertoldi DS, Millán EN, Fernández Guillermet A (2021) Phenomenology of the heating, melting and diffusion processes in Au nanoparticles. Phys Chem Chem Phys 23:1298–1307 Einstein A (1905) Über die von der molekularkinetischen Theorie der Wërme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322:549–560 Qian H, Sheetz M, Elson E (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal 60:910–921 Bee M (1988) Quasielastic neutron scattering. Adam Hilger, United Kingdom Demmel F, Szubrin D, Pilgrim W-C, Morkel C (2011) Diffusion in liquid aluminium probed by quasielastic neutron scattering. Phys Rev B 84:014307 Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG et al (2020) QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Matter 32:015901 Winey JM, Kubota A, Gupta YM (2010) Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum. Modelling and Simulation in Materials Science and Engineering 18:029801 Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics 101:4177–4189 Alfè D, Gillan MJ (1998) First-principles calculation of transport coefficients. Phys Rev Lett 81:5161–5164