Probing the self-diffusion process in Aluminium
Tóm tắt
An in-depth understanding of the diffusion process in liquid metals is a key to design and engineering new high-performance materials. In this study, using molecular dynamics simulations supplemented with the embedded atom potential, we investigate/compare the self-diffusion process in liquid Aluminium. To understand the self-diffusion process, we analyse the radial distribution functions, velocity distributions, mean square displacements, and self-diffusion coefficients at various temperatures well above the melting temperature of Aluminium in the temperature range of 1000 K to 1800 K. As a key result, in both the
$$\alpha$$
and
$$\beta$$
phases, the self-diffusion coefficients show a non-linear variation with rise in temperatures in the range of 1000 K to 1200 K. From 1300 K to 1800 K, the self-diffusion coefficients increase more or less monotonically with rise in temperature. We found that a higher temperature in the range of 1300 K to 1800 K leads to a greater self-diffusion coefficient, suggesting the more violent movement of the atoms around their equilibrium positions. The results presented in this work can help to understand the differences in the self-diffusion process in the technologically relevant Al phases.
Tài liệu tham khảo
Steam AE, Irish EM, Eyring H (1940) Theory of diffusion in liquids. The Journal of Physical Chemistry 44:981–995
Liang Y (2018). In: White WM (ed) Encyclopedia of geochemistry: A comprehensive reference source on the chemistry of the Earth. Springer International Publishing, Cham, pp 363–375
Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia 48:279–306
Meyer A, Petry W, Koza M, Macht M-P (2003) Fast diffusion in ZrTiCuNiBe melts. Applied Physics Letters 83:3894–3896
Mei J, Davenport JW (1990) Molecular-dynamics study of self-diffusion in liquid transition metals. Phys Rev B 42:9682–9684
Bogicevic A, Hansen LB, Lundqvist BI (1997) Simulations of atomic structure, dynamics, and self-diffusion in liquid Au. Phys Rev E 55:5535–5545
Chauhan A, Ravi R, Chhabra R (2000) Self-diffusion in liquid metals. Chemical Physics 252:227–236
Mantina M, Wang Y, Arroyave R, Chen LQ, Liu ZK, Wolverton C (2008) First-principles calculation of self-diffusion coefficients. Phys Rev Lett 100:215901
Brooks CL (1989) Computer simulation of liquids. Journal of Solution Chemistry 18:99–99
Protopapas P, Andersen HC, Parlee NAD (1973) Theory of transport in liquid metals. I. Calculation of self-diffusion coefficients. The Journal of Chemical Physics 59:15–25
Dzugutov M (1996) A universal scaling law for atomic diffusion in condensed matter. Nature 381:137–139
Dorward R, Pritchett T (1988) Advanced aluminium alloys for aircraft and aerospace applications. Materials and Design 9:63–69
Alemany MMG, Gallego LJ, González DJ (2004) Kohn-Sham ab initio molecular dynamics study of liquid Al near melting. Phys Rev B 70:134206
Cherne F III, Deymier P (2001) Calculation of the transport properties of liquid aluminum with equilibrium and non-equilibrium molecular dynamics. Scripta Materialia 45:985–991
Kargl F, Weis H, Unruh T, Meyer A (2012) Self diffusion in liquid aluminium. Journal of Physics: Conference Series 340:012077
Jakse N, Pasturel A (2013) Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics. Scientific Reports 3:3135
Kresse G (1995) Ab initio molecular dynamics for liquid metals. J Non-Cryst Solids 192–193:222–229. Structure of Non-Crystalline Materials 6
Hoshino K (2009) Structure of liquid metals byab initiomolecular-dynamics simulations. Journal of Physics: Condensed Matter 21:474212
Belashchenko DK (2012) Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth. Russian Journal of Physical Chemistry A 86:779–790
Lë Y, Cheng H, Chen M (2012) A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals. The Journal of Chemical Physics 136:214505
Okita S, Verestek W, Sakane S, Takaki T, Ohno M, Shibuta Y (2017) Molecular dynamics simulations investigating consecutive nucleation, solidification and grain growth in a twelve-million-atom Fe-system. J Cryst Growth 474:140–145. The 8th International Workshop on Modeling in Crystal Growth
Louzguine-Luzgin DV, Belosludov R, Saito M, Kawazoe Y, Inoue A (2008) Glass-transition behavior of Ni: Calculation, prediction, and experiment. Journal of Applied Physics 104:123529
Kirova EM, Norman GE, Pisarev VV (2019) Simulation of the glass transition of a thin aluminum melt layer at ultrafast cooling under isobaric conditions. JETP Letters 110:359–363
Shibuta Y, Sakane S, Miyoshi E, Okita S, Takaki T, Ohno M (2017) Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nature Communications 8:10
Wilde G, Sebright J, Perepezko J (2006) Bulk liquid undercooling and nucleation in gold. Acta Materialia 54:4759–4769
Ju YY, Zhang Q-M, Gong Z-Z, Ji G-F (2013) Molecular dynamics simulation of self-diffusion coefficients for liquid metals. Chinese Physics B 22:083101
González DJ, González LE, López JM, Stott MJ (2002) Dynamical properties of liquid Al near melting: An orbital-free molecular dynamics study. Phys Rev B 65:184201
Foiles SM (1985) Application of the embedded-atom method to liquid transition metals. Phys Rev B 32:3409–3415
Foiles SM, Adams JB (1989) Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Phys Rev B 40:5909–5915
Han XJ, Wang JZ, Chen M, Guo ZY (2004) Molecular dynamics simulation of thermophysical properties of undercooled liquid cobalt. Journal of Physics: Condensed Matter 16:2565–2574
Zahid F, Bhuiyan GM, Sultana S, Khaleque MA, Rashid R, Rahman SMM (1999) Investigations of the static and dynamic properties of liquid less simple metals. Physica Status Solidi (b) 215:987–998
Bertoldi DS, Millán EN, Fernández Guillermet A (2021) Phenomenology of the heating, melting and diffusion processes in Au nanoparticles. Phys Chem Chem Phys 23:1298–1307
Einstein A (1905) Über die von der molekularkinetischen Theorie der Wërme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322:549–560
Qian H, Sheetz M, Elson E (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal 60:910–921
Bee M (1988) Quasielastic neutron scattering. Adam Hilger, United Kingdom
Demmel F, Szubrin D, Pilgrim W-C, Morkel C (2011) Diffusion in liquid aluminium probed by quasielastic neutron scattering. Phys Rev B 84:014307
Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG et al (2020) QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Matter 32:015901
Winey JM, Kubota A, Gupta YM (2010) Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum. Modelling and Simulation in Materials Science and Engineering 18:029801
Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics 101:4177–4189
Alfè D, Gillan MJ (1998) First-principles calculation of transport coefficients. Phys Rev Lett 81:5161–5164