Probing the links between in vitro potency, ADMET and physicochemical parameters
Tóm tắt
Từ khóa
Tài liệu tham khảo
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug. Discov. 5, 993–996 (2006).
Li, D. & Kerns, E. H. Application of pharmaceutical profiling assays for optimization of druglike properties. Curr. Opin. Drug Discov. Devel. 8, 495–504 (2005).
Peck, R. W. Driving earlier clinical attrition: if you want to find the needle, burn down the haystack. Considerations for biomarker development. Drug Discov. Today 12, 289–294 (2006).
Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).
Kalgutkar, A. S. et al. A comprehensive listing of bioactivation pathways of organic functional groups. Curr. Drug Metabol. 6, 161–225 (2005).
Keseru, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nature Rev. Drug Discov. 8, 203–212 (2009).
Lackey, K. Lessons from the drug discovery of lapatinib, a dual ErbB1/2 tyrosine kinase inhibitor. Curr. Topics Med. Chem. 6, 435–460 (2006).
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997). This paper highlighted for the first time the link between drug-likeness and key physicochemical properties (that is, the rule of 5).
Teague, S. J., Davis, A. M., Leeson, P. D &, Oprea. T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. 38, 3743–3748 (1999).
Hann, M. M., Leach, A. R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (1999).
Leeson, P. D., Davis, A. M. & Steele, J. Drug-like properties: guiding principles for design — or chemical prejudice? Drug Discov. Today 1, 189–195 (2004).
Lajiness, M. S., Vieth, M. & Erickson, J. Molecular properties that influence oral drug-like behaviour. Curr. Opin. Drug Disc. Devel. 7, 470–477 (2004).
Hann, M. M. & Oprea, T. I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 8, 255–263 (2004).
Leeson, P. D. & Davis, A. M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem. 47, 6338–6348 (2004).
Li, D. & Kerns, E. H. Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov. Today 11, 446–451 (2006).
Wunberg, T. et al. Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits. Drug Discov. Today 11, 175–180 (2006).
De Witte, R. S. Avoiding physicochemical artefacts in early ADME–Tox experiments. Drug Discov. Today 11, 855–859 (2006).
Leeson, P. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Rev. Drug Discov. 6, 881–890 (2007). An excellent paper that describes, with well-chosen examples, the importance of physicochemical properties in medicinal chemistry research.
Proudfoot, J. The evolution of synthetic oral drug properties. Bioorg. Med. Chem. Lett. 15, 1087–1090 (2005).
Johnson, T. J., Dress, K. R. & Edwards, M. Using the Golden Triangle to optimize clearance and oral absorption. Bioorg. Med. Chem. Lett. 19, 5560–5564 (2009).
Waring, M. J. Defining optimum lipophilicity and molecular weight ranges for drug candidates — molecular weight dependent lower logD limits based on permeability. Bioorg. Med. Chem. Lett. 19, 2844–2851 (2009).
Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).
Gleeson, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 51, 817–834 (2008). An interesting paper that assesses the link between molecular mass, logP and ionization state for a range of ADMET parameters that are routinely measured in industry.
Sneader, W. Drug Prototypes and their Exploitation. (Wiley, Chichester, 1996).
Oprea, T. I., Davis, A. M., Teague, S. J. & Leeson, P. D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1315 (2001).
Hadjuk, P. J. Fragment-based drug design: how big is too big? J. Med. Chem. 49, 6972–6976 (2006). This paper highlighted the benefits of selecting the most ligand-efficient molecular templates in lead generation.
Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M. & Leeson P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 46, 1250–1256 (2003). This study showed that, as compounds in different phases of development get closer to the market, their mean molecular mass and logP tend to converge towards those of marketed drugs.
Tyrchana, C., Blomberga, N., Engkvista, O., Kogeja, T. & Muresan, S. Physicochemical property profiles of marketed drugs, clinical candidates and bioactive compounds. Bioorg. Med. Chem. Lett. 19, 6943–6947 (2009).
Oprea, T. I. et al. Lead-like, drug-like or ''pub-like'': how different are they? J. Comput. Aided Mol. Des. 21, 113–119 (2007).
Andrews, P. R., Craik, D. J. & Martin, J. L. Functional group contributions to drug-receptor interactions. J. Med. Chem. 27, 1648–1657 (1984).
Kuntz, I. D., Chen, K., Sharp, K. A. & Kollman P. A. The maximal affinity of ligands. Proc. Natl Acad. Sci. USA 96, 9997–10002 (1999).
Abad-Zapatero, C. & Metz, J. T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today 10, 464–469 (2005).
Perola, E. An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs. J. Med. Chem. 53, 2986–2997 (2010).
Hadjuk, P. J., Huth, J. R. & Tse, C. Predicting protein druggability. Drug Discov. Today 10, 1675–1682 (2005).
Vieth, M. & Sutherland, J. J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem. 49, 3451–3453 (2009).
Zimmermann, G. R., Lehár, J. & Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).
Hopkins, A. L., Mason, J. S. & Overington, J. P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16, 127–136 (2006).
Morphy, R. & Rankovic, Z. Fragments, network biology and designing multiple ligands. Drug Discov. Today 12, 156–160 (2007).
Azzaoui, K. et al. Modeling promiscuity based on in vitro safety pharmacology profiling data. Chem. Med. Chem. 2, 874–880.
Peters, J. U., Schnider, P., Mattei, P. & Kansy, M. Pharmacological promiscuity: dependence on compound properties and target specificity in a set of recent Roche compounds. Chem. Med. Chem. 4, 680–186 (2009).
Davis, A. M., Keeling, D. J., Steele, J., Tomkinson, N. P. & Tinker, A. C. Components of successful lead generation. Curr. Topics Med. Chem. 5, 421–439 (2005).
Morphy, R. The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. J. Med. Chem. 49, 2969–2978 (2006).
McGinnity, D. F., Collington, J., Austin, R. P. & Riley, R. J. Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs. Curr. Drug Metab. 8, 463–479 (2007).
Jeffrey, P. & Summerfield, S. Assessment of the blood–brain barrier in CNS drug discovery. Neurobiol. Dis. 37, 33–37 (2010).
Summerfield, S. G. et al. Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain. J. Pharmacol. Exp. Ther. 316, 1282–1290 (2006).
Watson, J. et al. Receptor occupancy and brain free fraction. Drug. Metab. Dispos. 37, 753–760 (2009).
Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L. & Vidal, M. Drug-target network. Nature Biotech. 25, 1119–1126 (2007).
Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nature Chem. Biol. 4, 682–690 (2008).
Janga, S. C. & Tzakos, A. Structure and organization of drug-target networks: insights from genomic approaches for drug discovery. Mol. Biosyst. 5, 1536–1548 (2009).
Congreve, M. A 'Rule of Three' for fragment-based lead discovery? Drug Discov. Today 8, 876–877 (2003).
Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug–target residence time and its implications for lead optimization. Nature Rev. Drug Discov. 5, 730–739 (2006). This paper discusses issues associated with current biochemical screening technologies, and advocates the assessment of receptor off-rates to facilitate the optimization of compound efficacy.
Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).
Ekins, S. & Williams, A. J. Reaching out to collaborators: crowdsourcing for pharmaceutical research. Pharm. Res. 27, 393–395 (2010).
Young, D., Martin, T., Venkatapathy, R. & Harten, P. Are the chemical structures in your QSAR correct? QSAR Comb. Sci. 27, 1337–1345 (2008).
Fourches, D., Muratov, E. & Tropsha, A. Trust, but verify: on the importance of chemical structure cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 50, 1189–1204 (2010).
Daugan, A. et al. The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 1:5,6,11,11a-tetrahydro-1H-imidazo[1'5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione analogues. J. Med. Chem. 46, 4525–4532 (2003).