Probing soft fibrous materials by indentation
Tài liệu tham khảo
Lake, 2011, Collagen-agarose co-gels as a model for collagen–matrix interaction in soft tissues subjected to indentation, J. Biomed. Mate. Res. Part A, 99A, 507, 10.1002/jbm.a.33183
Heim, 2006, Determination of the elastic modulus of native collagen fibrils via radial indentation, Appl. Phys. Lett., 89, 10.1063/1.2367660
Staunton, 2016, Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices, Sci. Rep., 6, 19686, 10.1038/srep19686
Vargas-Pinto, 2013, The effect of the endothelial cell cortex on atomic force microscopy measurements, Biophys. J., 105, 300, 10.1016/j.bpj.2013.05.034
Carl, 2008, Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing, Pflügers Arch. Eur. J. Physiol., 457, 551, 10.1007/s00424-008-0524-3
Leporatti, 2006, Elasticity and adhesion of resting and lipopolysaccharide-stimulated macrophages, FEBS Lett., 580, 450, 10.1016/j.febslet.2005.12.037
Li, 2008, AFM indentation study of breast cancer cells, Biochem. Biophys. Res. Commun., 374, 609, 10.1016/j.bbrc.2008.07.078
Korhonen, 2002, Importance of the superficial tissue layer for the indentation stiffness of articular cartilage, Med. Eng. Phys., 24, 99, 10.1016/S1350-4533(01)00123-0
Korhonen, 2002, Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation, J. Biomech., 35, 903, 10.1016/S0021-9290(02)00052-0
Lau, 2008, Indentation stiffness of aging human costal cartilage, Acta Biomater., 4, 97, 10.1016/j.actbio.2007.06.008
Swann, 1989, Improved techniques for measuring the indentation and thickness of articular cartilage, Proc. Inst. Mech. Eng. Part H J. Eng. Med., 203, 143, 10.1243/PIME_PROC_1989_203_026_01
Ross, 1999, Analysis of the elastic modulus of agar gel by indentation, J. Texture Stud., 30, 17, 10.1111/j.1745-4603.1999.tb00199.x
Long, 2011, Effects of gel thickness on microscopic indentation measurements of gel modulus, Biophys. J., 101, 643, 10.1016/j.bpj.2011.06.049
Hu, 2010, Using indentation to characterize the poroelasticity of gels, Appl. Phys. Lett., 96, 10.1063/1.3370354
Mow, 1989, Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study, J. Biomech., 22, 853, 10.1016/0021-9290(89)90069-9
Mattice, 2006, Spherical indentation load-relaxation of soft biological tissues, J. Mater. Res., 21, 2003, 10.1557/jmr.2006.0243
Hentati, 2021, On the contact law of open-cell poro-granular materials, Int. J. Solids Struct., 208–209, 83, 10.1016/j.ijsolstr.2020.10.023
Ebenstein, 2006, Nanoindentation of biological materials, Nano Today, 1, 26, 10.1016/S1748-0132(06)70077-9
Schuh, 2006, Nanoindentation studies of materials, Mater. Today, 9, 32, 10.1016/S1369-7021(06)71495-X
Pharr, 1992, Measurement of thin film mechanical properties using nanoindentation, MRS Bull., 17, 28, 10.1557/S0883769400041634
Vahabikashi, 2019, Probe sensitivity to cortical versus intracellular cytoskeletal network stiffness, Biophys. J., 116, 518, 10.1016/j.bpj.2018.12.021
Dimitriadis, 2002, Determination of elastic moduli of thin layers of soft material using the atomic force microscope, Biophys. J., 82, 2798, 10.1016/S0006-3495(02)75620-8
Johnson, 1992
Wu, 2016, Hertzian load–displacement relation holds for spherical indentation on soft elastic solids undergoing large deformations, Tribol. Int., 97, 71, 10.1016/j.triboint.2015.12.034
Lin, 2007, Elasticity of rubber-like materials measured by AFM nanoindentation, Express Polym. Lett., 1, 576, 10.3144/expresspolymlett.2007.79
Johnson, 1971, Surface energy and the contact of elastic solids, Proc. R. Soc. Lond. A Math Phys. Sci., 324, 301, 10.1098/rspa.1971.0141
Derjaguin, 1994, Effect of contact deformations on the adhesion of particles, Prog. Surf. Sci., 45, 131, 10.1016/0079-6816(94)90044-2
Maugis, 1992, Adhesion of spheres: the JKR-DMT transition using a dugdale model, J. Colloid Interface Sci., 150, 243, 10.1016/0021-9797(92)90285-T
Piétrement, 2000, General equations describing elastic indentation depth and normal contact stiffness versus load, J. Colloid Interface Sci., 226, 166, 10.1006/jcis.2000.6808
Carpick, 1999, A general equation for fitting contact area and friction vs load measurements, J. Colloid Interface Sci., 211, 395, 10.1006/jcis.1998.6027
Kallmes, 1960, The structure of paper, I. the statistical geometry of an ideal two dimensional fiber network, Tappi, 43, 737
Sherman, 2015, The materials science of collagen, J. Mech. Behav. Biomed. Mater., 52, 22, 10.1016/j.jmbbm.2015.05.023
Brown, 2012, Damage initiation and progression in the cartilage surface probed by nonlinear optical microscopy, J. Mech. Behav. Biomed. Mater., 5, 62, 10.1016/j.jmbbm.2011.08.004
Lindström, 2010, Biopolymer network geometries: characterization, regeneration, and elastic properties, Phys. Rev. E, 82, 10.1103/PhysRevE.82.051905
Picu, 2020, Mechanics of random fiber networks: structure–properties relation, 1
Broedersz, 2014, Modeling semiflexible polymer networks, Rev. Mod. Phys., 86, 995, 10.1103/RevModPhys.86.995
Koh, 2012, Branching toughens fibrous networks, J. Mech. Behav. Biomed. Mater., 12, 74, 10.1016/j.jmbbm.2012.03.011
Lake, 2011, Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose co-gel model, Ann. Biomed. Eng., 39, 1891, 10.1007/s10439-011-0298-1
Bancelin, 2015, Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy, Sci. Rep., 5, 17635, 10.1038/srep17635
Mauri, 2015, Deformation mechanisms of human amnion: quantitative studies based on second harmonic generation microscopy, J. Biomech., 48, 1606, 10.1016/j.jbiomech.2015.01.045
Islam, 2017, Morphology and mechanics of fungal mycelium, Sci. Rep., 7, 13070, 10.1038/s41598-017-13295-2
Islam, 2018, Effect of network architecture on the mechanical behavior of random fiber networks, J. Appl. Mech., 85, 10.1115/1.4040245
Hatami-Marbini, 2008, Scaling of nonaffine deformation in random semiflexible fiber networks, Phys. Rev. E, 77, 10.1103/PhysRevE.77.062103
Mauri, 2015, A discrete network model to represent the deformation behavior of human amnion, J. Mech. Behav. Biomed. Mater., 58, 45, 10.1016/j.jmbbm.2015.11.009
Head, 2003, Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks, Phys. Rev. E, 68, 10.1103/PhysRevE.68.061907
Head, 2005, Mechanical response of semiflexible networks to localized perturbations, Phys. Rev. E, 72, 10.1103/PhysRevE.72.061914
Lin, 2008, Nanomechanics of polymer gels and biological tissues: a critical review of analytical approaches in the Hertzian regime and beyond, Soft Matter, 4, 669, 10.1039/b714637j
Lin, 2009, Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models, Biomech. Model Mechanobiol., 8, 345, 10.1007/s10237-008-0139-9
Giannakopoulos, 2007, Spherical indentation of incompressible rubber-like materials, J. Mech. Phys. Solids, 55, 1196, 10.1016/j.jmps.2006.11.010
Guo, 2020, Contact model for incompressible neo-Hookean materials under finite spherical indentation, J. Appl. Mech., 87, 10.1115/1.4046026
Crick, 2007, Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point, Biomech. Model. Mechanobiol., 6, 199, 10.1007/s10237-006-0046-x
Islam, 2019, Random fiber networks with inclusions: the effect of the inclusion stiffness, Mech. Soft Mater., 1, 1, 10.1007/s42558-019-0009-x
Islam, 2019, Random fiber networks with inclusions: the mechanism of reinforcement, Phys. Rev. E, 99, 10.1103/PhysRevE.99.063001
Burkel, 2018, Heterogeneity and nonaffinity of cell-induced matrix displacements, Phys. Rev. E, 98, 10.1103/PhysRevE.98.052410
Grimmer, 2018, Displacement propagation in fibrous networks due to local contraction, J. Biomech. Eng., 140, 10.1115/1.4038744
Picu, 2018, Poisson's contraction and fiber kinematics in tissue: insight from collagen network simulations, J. Biomech. Eng., 140, 10.1115/1.4038428
Storåkers, 1986, On material representation and constitutive branching in finite compressible elasticity, J. Mech. Phys. Solids, 34, 125, 10.1016/0022-5096(86)90033-5
Notbohm, 2013
Deogekar, 2018, On the strength of random fiber networks, J. Mech. Phys. Solids, 116, 1, 10.1016/j.jmps.2018.03.026
Merson, 2020, Size effects in random fiber networks controlled by the use of generalized boundary conditions, Int. J. Solids Struct., 206, 314, 10.1016/j.ijsolstr.2020.09.033
Jansen, 2018, The role of network architecture in collagen mechanics, Biophys. J., 114, 2665, 10.1016/j.bpj.2018.04.043
Shamloo, 2016, A comparative study of collagen matrix density effect on endothelial sprout formation using experimental and computational approaches, Ann. Biomed. Eng., 44, 929, 10.1007/s10439-015-1416-2
Yang, 2007, Micromechanical bending of single collagen fibrils using atomic force microscopy, J. Biomed. Mater. Res. Part A, 82A, 160, 10.1002/jbm.a.31127
Lee, 2014, A three-dimensional computational model of collagen network mechanics, PLoS ONE, 9, 10.1371/journal.pone.0111896
Han, 2016, On the origin of indentation size effects and depth dependent mechanical properties of elastic polymers, J. Polym. Eng., 36, 103, 10.1515/polyeng-2015-0030
Yang, 2020, Continuum modeling of crushing of low density foams, J. Mech. Phys. Solids, 136, 10.1016/j.jmps.2019.103688
Berkache, 2019, Identification of equivalent couple-stress continuum models for planar random fibrous media, Contin. Mech. Thermodyn., 31, 1035, 10.1007/s00161-018-0710-2
Berkache, 2017, Construction of second gradient continuum models for random fibrous networks and analysis of size effects, Compos. Struct., 181, 347, 10.1016/j.compstruct.2017.08.078
Rosakis, 2015, A model for compression-weakening materials and the elastic fields due to contractile cells, J. Mech. Phys. Solids, 85, 16, 10.1016/j.jmps.2015.08.013
Conti, 2009, Cross-linked networks of stiff filaments exhibit negative normal stress, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.088102
Gourgiotis, 2019, The Hertz contact problem in couple-stress elasticity, Int. J. Solids Struct., 168, 228, 10.1016/j.ijsolstr.2019.03.032
Dhaliwal, 1976, The axisymmetric Boussinesq problem for a semi-space in micropolar theory, Int. J. Eng. Sci., 14, 769, 10.1016/0020-7225(76)90032-X
Stuermann E., Shtaerman I.Y., On Hertz theory of local deformation of compressed bodies, In Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS 1939 (Vol. 25, pp. 359-61).
Bower, 2009
Gibson, 1997
Tekog̃lu, 2011, Size effects in foams: experiments and modeling, Prog. Mater. Sci., 56, 109, 10.1016/j.pmatsci.2010.06.001
Onck, 2001, Size effects in ductile cellular solids. Part I: modeling, Int. J. Mech. Sci., 43, 681, 10.1016/S0020-7403(00)00042-4
Andrews, 2001, Size effects in ductile cellular solids. Part II: experimental results, Int. J. Mech. Sci., 43, 701, 10.1016/S0020-7403(00)00043-6
Smith, 1999, Strain dependent densification during indentation in auxetic foams, Cell. Polym., 18, 79
Sabuwala, 2016, Configurational phases in elastic foams under lengthscale-free punching, J. Mech. Phys. Solids, 93, 57, 10.1016/j.jmps.2016.01.005
Bouterf, 2018, Analysis of compaction in brittle foam with multiscale indentation tests, Mech. Mater., 118, 22, 10.1016/j.mechmat.2017.12.004