Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review

Chemical Engineering Journal - Tập 170 Số 2-3 - Trang 353-362 - 2011
Zhaohui Wang1,2, Wanhong Ma1, Chuncheng Chen1, Hongwei Ji1, Jincai Zhao1
1Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
2College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004

Chen, 2010, Photocatalytic degradation of organic pollutants by co-doped TiO2 under visible light irradiation, Curr. Org. Chem., 14, 630, 10.2174/138527210790963421

Chong, 2010, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039

Mo, 2009, Photocatalytic purification of volatile organic compounds in indoor air: a literature review, Atmos. Environ., 43, 2229, 10.1016/j.atmosenv.2009.01.034

Fujishima, 2008, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001

Weil, 1994

Atherton, 1993

Martin-Neto, 2009, Raman, UV-visible absorption and fluorescence spectroscopies in studies of NOM, 651

Chiesa, 2010, EPR characterization and reactivity of surface-localized inorganic radicals and radical ions, Chem. Rev., 110, 1320, 10.1021/cr800366v

Goodman, 1994, Electron paramagnetic resonance spectroscopy, 173

Rhodes, 2005, Reactive radicals on reactive surfaces: heterogeneous processes in catalysis and environmental pollution control, Prog. React. Kinet., 30, 145, 10.3184/007967405779134038

Brezová, 2007, Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy, Res. Chem. Intermed., 33, 251, 10.1163/156856707779238630

Dimitrijevic, 2009, dynamics of localized charges in dopamine-modified TiO2 and their effect on the formation of reactive oxygen species, J. Am. Chem. Soc., 131, 2893, 10.1021/ja807654k

Murphy, 2008, EPR of paramagnetic centres on solid surfaces, Electron Paramagn. Reson., 21, 105, 10.1039/b709153m

Rajh, 2003, Charge separation in titanium oxide nanocrystalline semiconductors revealed by magnetic resonance, 1

Rhodes, 2004, Electron spin resonance (some applications for the biological and environmental sciences), Annu. Rep. Prog. Chem. Sect. C, 100, 149, 10.1039/B313676K

Saifutdinov, 2001

Gerson, 2003

Jaeger, 1979, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems, J. Phys. Chem., 83, 3146, 10.1021/j100487a017

Bartosz, 2006, Use of spectroscopic probes for detection of reactive oxygen species, Clin. Chim. Acta, 368, 53, 10.1016/j.cca.2005.12.039

Buettner, 1987, Spin trapping: ESR parameters of spin adducts, Free Radic. Biol. Med., 3, 259, 10.1016/S0891-5849(87)80033-3

Grela, 1996, Quantitative spin-trapping studies of weakly illuminated titanium dioxide sols. Implications for the mechanism of photocatalysis, J. Phys. Chem., 100, 16940, 10.1021/jp953562r

Janzen, 1992, Stabilities of hydroxyl radical spin adducts of PBN-type spin traps, Free Radic. Biol. Med., 12, 169, 10.1016/0891-5849(92)90011-5

Bilski, 1996, Oxidation of the spin trap 5,5-dimethyl-1-pyrroline N-oxide by singlet oxygen in aqueous solution, J. Am. Chem. Soc., 118, 1330, 10.1021/ja952140s

Li, 2001, Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation, Langmuir, 17, 4118, 10.1021/la010035s

Gerischer, 1991, The role of oxygen in photooxidation of organic molecules on semiconductor particles, J. Phys. Chem., 95, 5261, 10.1021/j100166a063

Tamaki, 2007, Dynamics of efficient electron–hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition, Phys. Chem. Chem. Phys., 9, 1453, 10.1039/B617552J

Micic, 1993, Photoinduced hole transfer from TiO2 to methanol molecules in aqueous solution studied by electron paramagnetic resonance, J. Phys. Chem., 97, 13284, 10.1021/j100152a036

Micic, 1993, Trapped holes on TiO2 colloids studied by electron paramagnetic resonance, J. Phys. Chem., 97, 7277, 10.1021/j100130a026

Rajh, 1996, Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: an EPR study, J. Phys. Chem., 100, 4538, 10.1021/jp952002p

Ke, 2006, Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy, J. Phys. Chem. B, 110, 11628, 10.1021/jp0612578

Howe, 1987, EPR study of hydrated anatase under uv irradiation, J. Phys. Chem., 91, 3906, 10.1021/j100298a035

Hurum, 2003, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-Phase TiO2 using EPR, J. Phys. Chem. B, 107, 4545, 10.1021/jp0273934

Berger, 2005, Light-induced charge separation in anatase TiO2 particles, J. Phys. Chem. B, 109, 6061, 10.1021/jp0404293

Howe, 1985, EPR observation of trapped electrons in colloidal TiO2, J. Phys. Chem., 89, 4495, 10.1021/j100267a018

Li, 2007, The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials, Chem. Phys., 339, 173, 10.1016/j.chemphys.2007.05.023

Hurum, 2005, Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms, J. Phys. Chem. B, 109, 977, 10.1021/jp045395d

Li, 2008, The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites, J. Am. Chem. Soc., 130, 5402, 10.1021/ja711118u

Ohno, 2001, Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases, J. Catal., 203, 82, 10.1006/jcat.2001.3316

Komaguchi, 2006, Photoinduced electron transfer from anatase to rutile in partially reduced TiO2 (P-25) nanoparticles: an ESR study, Chem. Phys. Letts., 428, 338, 10.1016/j.cplett.2006.07.003

Hurum, 2006, Probing reaction mechanisms in mixed phase TiO2 by EPR, J. Electron. Spectrosc. Relat. Phenom., 150, 155, 10.1016/j.elspec.2005.01.294

Mills, 1997, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem., 108, 1, 10.1016/S1010-6030(97)00118-4

Bickley, 1991, A structural investigation of titanium dioxide photocatalysts, J. Solid State Chem., 92, 178, 10.1016/0022-4596(91)90255-G

Zheng, 2010, Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2 (B) phases, J. Mol. Catal. A: Chem., 316, 75, 10.1016/j.molcata.2009.10.002

Geory, 1995, Photocatalytic efficiency variability in TiO2 particles, J. Phys. Chem., 99, 4215, 10.1021/j100012a050

Schwarz, 1997, A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions, J. Phys. Chem. B, 101, 7127, 10.1021/jp971315c

Zhao, 2008, Surface modification of TiO2 by phosphate: effect on photocatalytic activity and mechanism implication, J. Phys. Chem. C, 112, 5993, 10.1021/jp712049c

Tachikawa, 2004, Photocatalytic one-electron oxidation of biphenyl derivatives strongly coupled with the TiO2 surface, Langmuir, 20, 2753, 10.1021/la0361262

Tojo, 2004, Oxidation processes of aromatic sulfides by hydroxyl radicals in colloidal solution of TiO2 during pulse radiolysis, Chem. Phys. Lett., 384, 312, 10.1016/j.cplett.2003.11.109

Tachikawa, 2004, Influence of adsorption on TiO2 photocatalytic one-electron oxidation kinetics of aromatic sulfides studied by time-resolved diffuse reflectance spectroscopy, J. Phys. Chem. B, 108, 5859, 10.1021/jp037003t

Wu, 2000, Mechanistic study of the TiO2-assisted photodegradation of squarylium cyanine dye in methanolic suspensions exposed to visible light, New J. Chem., 24, 93, 10.1039/a908647a

Liu, 2000, Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination, J. Mol. Catal. A-Chem., 153, 221, 10.1016/S1381-1169(99)00351-9

Liu, 2000, ESR spin-trapping detection of radical intermediates in the TiO2-assisted photo-oxidation of sulforhodamine B under visible irradiation, J. Photochem. Photobiol. A-Chem., 133, 83, 10.1016/S1010-6030(00)00227-6

Li, 2002, Photodegradation of dye pollutants on TiO2 nanoparticles dispersed in silicate under UV–vis irradiation, Appl. Catal. B-Environ., 37, 331, 10.1016/S0926-3373(02)00011-5

Chen, 2002, Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism, J. Phys. Chem. B, 106, 318, 10.1021/jp0119025

Zhao, 2002, Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst, J. Phys. Chem. B, 106, 5022, 10.1021/jp020205p

Chen, 2002, Formation and identification of intermediates visible-light-assisted photodegradation sulforhodamine-B dye in aqueous TiO2 dispersion, Environ. Sci. Technol., 36, 3604, 10.1021/es0205434

Zhao, 2005, Photocatalytic degradation of organic pollutants under visible light irradiation, Top. Catal., 35, 269, 10.1007/s11244-005-3834-0

Ishibashi, 2000, Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol A: Chem., 134, 139, 10.1016/S1010-6030(00)00264-1

Chen, 2004, Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications, Chem. Eur. J., 10, 1956, 10.1002/chem.200305453

Mrowetz, 2004, Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination, J. Phys. Chem. B, 108, 17263, 10.1021/jp0467090

Tachikawa, 2004, Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy, J. Phys. Chem. B, 108, 19299, 10.1021/jp0470593

Rengifo-Herrera, 2009, Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light, Appl. Catal. B, 88, 398, 10.1016/j.apcatb.2008.10.025

Hirakawa, 2008, Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems, J. Phys. Chem. C, 112, 15818, 10.1021/jp8055015

Zhao, 2004, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−xBx under visible irradiation, J. Am. Chem. Soc., 126, 4782, 10.1021/ja0396753

Nosaka, 2003, Photocatalytic OH radical formation in TiO2 aqueous suspension studied by several detection methods, Phys. Chem. Chem. Phys., 5, 4731, 10.1039/B307433A

Yang, 2005, Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes, J. Phys. Chem. B, 109, 21900, 10.1021/jp0540914

Chen, 2004, Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study, Environ. Sci. Technol., 38, 329, 10.1021/es034384f

Harbour, 1978, Detection of superoxide ions in nonaqueous media. Generation by photolysis of pigment dispersions, J. Phys. Chem., 82, 1397, 10.1021/j100501a015

Sawyer, 1981, How super is superoxide, Acc. Chem. Res., 14, 393, 10.1021/ar00072a005

Komaguchi, 2009, ESR study on the reversible electron transfer from O22− to Ti4+ on TiO2 nanoparticles induced by visible-light illumination, J. Phys. Chem. C, 113, 1160, 10.1021/jp809851b

Carter, 2007, Evidence for O2− radical stabilization at surface oxygen vacancies on polycrystalline TiO2, J. Phys. Chem. C, 111, 10630, 10.1021/jp0729516

Green, 2009, Interaction of molecular oxygen with oxygen vacancies on reduced TiO2: site specific blocking by probe molecules, Chem. Phys. Lett., 477, 340, 10.1016/j.cplett.2009.07.002

Murata, 2005, Electrophilic property of O3− photoformed on isolated Ti species in silica promoting alkene epoxidation, J. Catal., 231, 292, 10.1016/j.jcat.2005.01.012

Nosaka, 2004, Singlet oxygen formation in photocatalytic TiO2 aqueous suspension, Phys. Chem. Chem. Phys., 6, 2917, 10.1039/b405084c

Jańczyk, 2006, Singlet oxygen photogeneration at surface modified titanium dioxide, J. Am. Chem. Soc., 128, 15574, 10.1021/ja065970m

Munuera, 1981, Photogeneration of singlet oxygen from TiO2 surfaces, J. Chem. Soc. Faraday Trans., 1, 2747, 10.1039/f19817702747

Stylidi, 2004, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, Appl. Catal. B: Environ., 47, 189, 10.1016/j.apcatb.2003.09.014

Lion, 1976, New method of detecting singlet oxygen production, Nature, 263, 442, 10.1038/263442a0

Nosaka, 2006, ESR studies on the oxidation mechanism of sterically hindered cyclic amines in TiO2 photocatalytic systems, J. Phys. Chem. B, 110, 12993, 10.1021/jp061765h

Brezová, 2010, Photoinduced formation of reactive oxygen species in suspensions of titania mechanochemically synthesized from TiCl4, J. Mol. Catal. A: Chem., 327, 101, 10.1016/j.molcata.2010.05.019

Poupko, 1973, Electron transfer interactions between superoxide ion and organic compounds, J. Phys. Chem., 77, 1722, 10.1021/j100632a027

Konovalova, 2004, Generation of superoxide anion and most likely singlet oxygen in irradiated TiO2 nanoparticles modified by carotenoids, J. Photochem. Photobiol. A: Chem., 162, 1, 10.1016/S1010-6030(03)00313-7

Zhang, 2009, Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies of the oxidation reaction on the surface of TiO2, Angew. Chem. Int. Ed., 48, 6081, 10.1002/anie.200900322

Zhang, 2009, Studies on the selective oxidatioin by TiO2 photocatalysis and its mechanism

Carter, 2007, Free-radical pathways in the decomposition of ketones over polycrystalline TiO2: the role of organoperoxy radicals, ChemPhysChem, 8, 113, 10.1002/cphc.200600484

Nosaka, 1998, Factors governing the initial process of TiO2 photocatalysis studied by means of in situ electron spin resonance measurements, J. Phys. Chem. B, 102, 10279, 10.1021/jp982886n

Brezová, 2003, EPR study of photoinduced reduction of nitroso compounds in titanium dioxide suspensions, J. Photochem. Photobiol. A: Chem., 155, 179, 10.1016/S1010-6030(02)00357-X

He, 1998, EPR characteristics of a dye/colloidal TiO2 system under visible light irradiation, J. Chem. Soc. Faraday Trans., 94, 2375, 10.1039/a802208i

Zhang, 2008, Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO, Angew. Chem. Int. Ed., 47, 9730, 10.1002/anie.200803630

Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051

Napoli, 2009, The nitrogen photoactive centre in N-doped titanium dioxide formed via interaction of N atoms with the solid. Nature and energy level of the species, Chem. Phys. Lett., 477, 135, 10.1016/j.cplett.2009.06.050

Livraghi, 2005, The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis, Chem. Commun., 4, 498, 10.1039/b413548b

Livraghi, 2006, Origin of photoactivity of nitrogen-doped titanium dioxide under visible light, J. Am. Chem. Soc., 128, 15666, 10.1021/ja064164c

Wang, 2009, Pivotal role of fluorine in tuning band structure and visible-light photocatalytic activity of nitrogen-doped TiO2, Chem. Eur. J., 15, 4765, 10.1002/chem.200900221

Di Valentin, 2008, Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2, Chem. Mater., 20, 3706, 10.1021/cm703636s

Czoska, 2008, The nature of defects in fluorine-doped TiO2, J. Phys. Chem. C, 112, 8951, 10.1021/jp8004184

Pelaez, 2010, Synthesis, structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR, Appl. Catal. B: Environ., 99, 378, 10.1016/j.apcatb.2010.06.017

Gopal, 2008, Chemical state and environment of boron dopant in B,N-Codoped anatase TiO2 nanoparticles: an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy, J. Am. Chem. Soc., 130, 2760, 10.1021/ja711424d