Probing nitric oxide signaling using molecular MRI

Free Radical Biology and Medicine - Tập 191 - Trang 241-248 - 2022
Ali Barandov1, Souparno Ghosh1, Alan Jasanoff1,2,3
1Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
2Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
3Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA

Tài liệu tham khảo

Liaudet, 2000, Biology of nitric oxide signaling, Crit. Care Med., 28, N37, 10.1097/00003246-200004001-00005 Heinrich, 2013, Biological nitric oxide signalling: chemistry and terminology, Br. J. Pharmacol., 169, 1417, 10.1111/bph.12217 Haselden, 2020, Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics, PLoS Comput. Biol., 16, 10.1371/journal.pcbi.1008069 Callaghan, 1994 Belliveau, 1991, Functional mapping of the human visual cortex by magnetic resonance imaging, Science, 254, 716, 10.1126/science.1948051 Ogawa, 1992, Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci. U. S. A., 89, 5951, 10.1073/pnas.89.13.5951 Bandettini, 1992, Time course EPI of human brain function during task activation, Magn. Reson. Med., 25, 390, 10.1002/mrm.1910250220 Ghosh, 2018, Probing the brain with molecular fMRI, Curr. Opin. Neurobiol., 50, 201, 10.1016/j.conb.2018.03.009 Lux, 2018, Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo, Curr. Opin. Chem. Biol., 45, 121, 10.1016/j.cbpa.2018.04.006 Li, 2019, Molecular magnetic resonance imaging with Gd(III)-Based contrast agents: challenges and key advances, J. Am. Chem. Soc., 141, 17025, 10.1021/jacs.9b09149 Shuvaev, 2021, Molecular MR contrast agents, Invest. Radiol., 56, 20, 10.1097/RLI.0000000000000731 Hall, 2009, What is the real physiological NO concentration in vivo?, Nitric Oxide, 21, 92, 10.1016/j.niox.2009.07.002 Hunter, 2013, Inaccuracies of nitric oxide measurement methods in biological media, Anal. Chem., 85, 1957, 10.1021/ac303787p Buerk, 2003, Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats, Neuroimage, 18, 1, 10.1006/nimg.2002.1314 McQuade, 2010, Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe, Proc. Natl. Acad. Sci. U. S. A., 107, 8525, 10.1073/pnas.0914794107 Bohlen, 2013, Is the real in vivo nitric oxide concentration pico or nano molar? Influence of electrode size on unstirred layers and NO consumption, Microcirculation, 20, 30, 10.1111/micc.12003 Thomas, 2001, The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2, Proc. Natl. Acad. Sci. U. S. A., 98, 355, 10.1073/pnas.98.1.355 Tannenbaum, 2006, Regulation and specificity of S-nitrosylation and denitrosylation, ACS Chem. Biol., 1, 615, 10.1021/cb600439h Kang, 2019, Structural insights into the mechanism of human soluble guanylate cyclase, Nature, 574, 206, 10.1038/s41586-019-1584-6 Pluth, 2011, Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors, Annu. Rev. Biochem., 80, 333, 10.1146/annurev-biochem-061009-091643 Cooper, 1999, Nitric oxide and iron proteins, Biochim. Biophys. Acta, 1411, 290, 10.1016/S0005-2728(99)00021-3 Fujii, 1999, Ex vivo EPR detection of nitric oxide in brain tissue, Magn. Reson. Med., 42, 599, 10.1002/(SICI)1522-2594(199909)42:3<599::AID-MRM24>3.0.CO;2-Y Fichtlscherer, 2000, MR imaging of nitrosyl-iron complexes: experimental study in rats, Radiology, 216, 225, 10.1148/radiology.216.1.r00jl10225 Fujii, 1999, In vivo imaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trapping, Magn. Reson. Med., 42, 235, 10.1002/(SICI)1522-2594(199908)42:2<235::AID-MRM4>3.0.CO;2-Y Komarov, 1993, In vivo spin trapping of nitric oxide in mice, Biochem. Biophys. Res. Commun., 195, 1191, 10.1006/bbrc.1993.2170 Yoshimura, 1996, In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice, Nat. Biotechnol., 14, 992, 10.1038/nbt0896-992 Wayland, 1976, Nitric oxide complexes of manganese and chromium tetraphenylporphyrin, J. Am. Chem. Soc., 98, 94, 10.1021/ja00417a016 Zhang, 2007, Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing, Proc. Natl. Acad. Sci. U. S. A., 104, 10780, 10.1073/pnas.0702393104 Gale, 2014, Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes, Inorg. Chem., 53, 10748, 10.1021/ic502005u Barandov, 2016, Membrane-permeable Mn(III) complexes for molecular magnetic resonance imaging of intracellular targets, J. Am. Chem. Soc., 138, 5483, 10.1021/jacs.5b13337 Gale, 2016, A janus chelator enables biochemically responsive MRI contrast with exceptional dynamic range, J. Am. Chem. Soc., 138, 15861, 10.1021/jacs.6b10898 Barandov, 2019, Sensing intracellular calcium ions using a manganese-based MRI contrast agent, Nat. Commun., 10, 897, 10.1038/s41467-019-08558-7 Barandov, 2020, Molecular magnetic resonance imaging of nitric oxide in biological systems, ACS Sens., 5, 1674, 10.1021/acssensors.0c00322 Lee, 2014, Molecular-level functional magnetic resonance imaging of dopaminergic signaling, Science, 344, 533, 10.1126/science.1249380 Hai, 2016, Molecular fMRI of serotonin transport, Neuron, 92, 754, 10.1016/j.neuron.2016.09.048 MacMicking, 1997, Nitric oxide and macrophage function, Annu. Rev. Immunol., 15, 323, 10.1146/annurev.immunol.15.1.323 Andersson, 1992, The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues, Neuroscience, 48, 169, 10.1016/0306-4522(92)90347-5 Garvey, 1997, 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo, J. Biol. Chem., 272, 4959, 10.1074/jbc.272.8.4959 Di Salle, 1997, Nitric oxide-haemoglobin interaction: a new biochemical hypothesis for signal changes in fMRI, Neuroreport, 8, 461, 10.1097/00001756-199701200-00017 Daryaei, 2017, A biomarker-responsive T2ex MRI contrast agent, Magn. Reson. Med., 77, 1665, 10.1002/mrm.26250 Kojima, 1999, Fluorescent indicators for imaging nitric oxide production, Angew Chem. Int. Ed. Engl., 38, 3209, 10.1002/(SICI)1521-3773(19991102)38:21<3209::AID-ANIE3209>3.0.CO;2-6 Thomas, 2015, Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide, Redox Biol., 5, 225, 10.1016/j.redox.2015.05.002 Ward, 2000, A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST), J. Magn. Reson., 143, 79, 10.1006/jmre.1999.1956 Zhang, 2003, PARACEST agents: modulating MRI contrast via water proton exchange, Acc. Chem. Res., 36, 783, 10.1021/ar020228m Liu, 2013, Nuts and bolts of chemical exchange saturation transfer MRI, NMR Biomed., 26, 810, 10.1002/nbm.2899 Terreno, 2010, Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents, Contrast Media Mol. Imaging, 5, 78, 10.1002/cmmi.369 Daryaei, 2015, Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging, Res. Rep. Nucl. Med., 5, 19 Liu, 2007, Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide, Magn. Reson. Med., 58, 1249, 10.1002/mrm.21428 Alderton, 2001, Nitric oxide synthases: structure, function and inhibition, Biochem. J., 357, 593, 10.1042/bj3570593 Suchy, 1996, Preliminary evaluation of PARACEST MRI agents for the detection of nitric oxide synthase, Can. J. Chem., 94, 715, 10.1139/cjc-2016-0179 Marletta, 1988, Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate, Biochemistry, 27, 8706, 10.1021/bi00424a003 Fernandez Diaz-Rullo, 2017, Synthesis and hyperpolarisation of eNOS substrates for quantification of NO production by (1)H NMR spectroscopy, Bioorg. Med. Chem., 25, 2730, 10.1016/j.bmc.2017.03.041 Cowley, 2011, Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen, J. Am. Chem. Soc., 133, 6134, 10.1021/ja200299u Adams, 2009, Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer, Science, 323, 1708, 10.1126/science.1168877 Rayner, 2018, Signal amplification by reversible exchange (SABRE): from discovery to diagnosis, Angew Chem. Int. Ed. Engl., 57, 6742, 10.1002/anie.201710406 Toda, 2015, Recent advances in research on nitrergic nerve-mediated vasodilatation, Pflügers Archiv, 467, 1165, 10.1007/s00424-014-1621-0 Attwell, 2010, Glial and neuronal control of brain blood flow, Nature, 468, 232, 10.1038/nature09613 Nippert, 2018, Mechanisms mediating functional hyperemia in the brain, Neuroscientist, 24, 73, 10.1177/1073858417703033 Burke, 2006, BOLD response during uncoupling of neuronal activity and CBF, Neuroimage, 32, 1, 10.1016/j.neuroimage.2006.03.035 Stefanovic, 2007, Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase, J. Cerebr. Blood Flow Metabol., 27, 741, 10.1038/sj.jcbfm.9600377 Ogawa, 1990, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. U. S. A., 87, 9868, 10.1073/pnas.87.24.9868 Babu, 1998, Design of isoform-selective inhibitors of nitric oxide synthase, Curr. Opin. Chem. Biol., 2, 491, 10.1016/S1367-5931(98)80125-7 Ghosh, 2022, Functional dissection of neural circuitry using a genetic reporter for fMRI, Nat. Neurosci., 25, 390, 10.1038/s41593-022-01014-8 Lee, 1998, Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase, J. Biol. Chem., 273, 27430, 10.1074/jbc.273.42.27430 Brenman, 1996, Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains, Cell, 84, 757, 10.1016/S0092-8674(00)81053-3 Prabhakar, 2000, A chimeric transmembrane domain directs endothelial nitric-oxide synthase palmitoylation and targeting to plasmalemmal caveolae, J. Biol. Chem., 275, 19416, 10.1074/jbc.M001952200 Krawchuk, 2020, Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex, J. Cerebr. Blood Flow Metabol., 40, 1427, 10.1177/0271678X19870105 Tsai, 2009, Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels, J. Neurosci., 29, 14553, 10.1523/JNEUROSCI.3287-09.2009 Santos, 2011, Brain nitric oxide inactivation is governed by the vasculature, Antioxidants Redox Signal., 14, 1011, 10.1089/ars.2010.3297 Noseworthy, 2003, BOLD magnetic resonance imaging of skeletal muscle, Semin. Muscoskel. Radiol., 7, 307, 10.1055/s-2004-815678 Fan, 2010, Blood oxygen level-dependent magnetic resonance imaging of the human liver: preliminary results, J. Comput. Assist. Tomogr., 34, 523, 10.1097/RCT.0b013e3181d5d503 Artunc, 2011, MRI to assess renal structure and function, Curr. Opin. Nephrol. Hypertens., 20, 669, 10.1097/MNH.0b013e32834ad579 Bartelle, 2016, Molecular fMRI, J. Neurosci., 36, 4139, 10.1523/JNEUROSCI.4050-15.2016 Fenno, 2014, Targeting cells with single vectors using multiple-feature Boolean logic, Nat. Methods, 11, 763, 10.1038/nmeth.2996 Stuber, 2016, Lateral hypothalamic circuits for feeding and reward, Nat. Neurosci., 19, 198, 10.1038/nn.4220 Leithner, 2010, Pharmacological uncoupling of activation induced increases in CBF and CMRO2, J. Cerebr. Blood Flow Metabol., 30, 311, 10.1038/jcbfm.2009.211 Hu, 2009, Functional transcranial brain imaging by optical-resolution photoacoustic microscopy, J. Biomed. Opt., 14, 10.1117/1.3194136 Mace, 2011, Functional ultrasound imaging of the brain, Nat. Methods, 8, 662, 10.1038/nmeth.1641 Josephson, 2001, Magnetic nanosensors for the detection of oligonucleotide sequences, Angew Chem. Int. Ed. Engl., 40, 3204, 10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO;2-H Perez, 2002, Magnetic relaxation switches capable of sensing molecular interactions, Nat. Biotechnol., 20, 816, 10.1038/nbt720 Yang, 2018, Engineering a pH-sensitive liposomal MRI agent by modification of a bacterial channel, Small, 14, 10.1002/smll.201704256 Sanino, 2014, Polymeric vesicles loaded with gadoteridol as reversible and concentration-independent magnetic resonance imaging thermometers, J. Biomed. Nanotechnol., 10, 1620, 10.1166/jbn.2014.1833 Desai, 2016, Molecular imaging with engineered physiology, Nat. Commun., 7, 10.1038/ncomms13607 Ohlendorf, 2020, Target-responsive vasoactive probes for ultrasensitive molecular imaging, Nat. Commun., 11, 2399, 10.1038/s41467-020-16118-7 Garthwaite, 2019, NO as a multimodal transmitter in the brain: discovery and current status, Br. J. Pharmacol., 176, 197, 10.1111/bph.14532 Stone, 1995, Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase, Biochem. Biophys. Res. Commun., 207, 572, 10.1006/bbrc.1995.1226 Lemon, 2021, Designer heme proteins: achieving novel function with abiological heme analogues, Acc. Chem. Res., 54, 4565, 10.1021/acs.accounts.1c00588 Wahsner, 2019, Chemistry of MRI contrast agents: current challenges and new frontiers, Chem. Rev., 119, 957, 10.1021/acs.chemrev.8b00363