Probing lattice vibrations of stabilized CsPbI3 polymorphs via low-frequency Raman spectroscopy

Journal of Materials Chemistry C - Tập 8 Số 26 - Trang 8896-8903
Yi Yang1,2,3, Jason P. Robbins1,2,3, Lotanna Ezeonu1,2,3, Yichen Ma4,2,3, Nicholas Sparta1,2,3, Xiaoqing Kong1,2,3, Stefan Strauf4,2,3, Simon G. Podkolzin1,2,3, Stephanie S. Lee1,2,3
1Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA
2Hoboken
3Stevens Institute of Technology
4Department of Physics, Stevens Institute of Technology, Hoboken, NJ, USA

Tóm tắt

The low-frequency Raman spectra of metal-halide perovskites are reported using a combination of a 976 nm laser and nanoconfinement to stabilize the crystals against temperature-induced polymorph transitions and humidity-induced degradation.

Từ khóa


Tài liệu tham khảo

Wang, 2018, Nat. Commun., 9, 4544, 10.1038/s41467-018-06915-6

Ávila, 2017, Joule, 1, 431, 10.1016/j.joule.2017.07.014

Myoung, 2014, Adv. Mater., 27, 1248

Ning, 2015, Nature, 523, 324, 10.1038/nature14563

Gong, 2016, Nat. Photonics, 10, 253, 10.1038/nphoton.2016.11

Eaton, 2016, Proc. Natl. Acad. Sci. U. S. A., 113, 1993, 10.1073/pnas.1600789113

Zhu, 2015, Nat. Mater., 14, 636, 10.1038/nmat4271

Hwang, 2017, Sci. Rep., 7, 673, 10.1038/s41598-017-00778-5

Zou, 2019, Adv. Opt. Mater., 7, 1900558, 10.1002/adom.201900558

Poncé, 2019, ACS Energy Lett., 4, 456, 10.1021/acsenergylett.8b02346

Hutter, 2017, ACS Energy Lett., 2, 1901, 10.1021/acsenergylett.7b00591

Levine, 2016, J. Phys. Chem. Lett., 7, 5219, 10.1021/acs.jpclett.6b02287

Miyata, 2017, Sci. Adv., 3, e1701217, 10.1126/sciadv.1701217

Miyata, 2017, Sci. Adv., 3, e1701469, 10.1126/sciadv.1701469

Pérez-Osorio, 2018, J. Phys. Chem. C, 122, 21703, 10.1021/acs.jpcc.8b04669

Zhou, 2018, J. Phys. Chem. Lett., 9, 4915, 10.1021/acs.jpclett.8b02036

Xue, 2019, Adv. Funct. Mater., 29, 1807922, 10.1002/adfm.201807922

Ibaceta-Jaña, 2020, Phys. Chem. Chem. Phys., 22, 5604, 10.1039/C9CP06568G

Damle, 2018, ACS Appl. Energy Mater., 1, 6707, 10.1021/acsaem.8b01539

Wright, 2016, Nat. Commun., 7, 11755, 10.1038/ncomms11755

Herz, 2016, Annu. Rev. Phys. Chem., 67, 65, 10.1146/annurev-physchem-040215-112222

Quarti, 2014, J. Phys. Chem. Lett., 5, 279, 10.1021/jz402589q

Park, 2018, Nat. Commun., 9, 2525, 10.1038/s41467-018-04946-7

Yaffe, 2017, Phys. Rev. Lett., 118, 136001, 10.1103/PhysRevLett.118.136001

Liao, 2019, J. Phys. Chem. Lett., 10, 1217, 10.1021/acs.jpclett.9b00344

Ben Uliel, 2019, J. Raman Spectrosc., 50, 1672, 10.1002/jrs.5715

Ledinský, 2015, J. Phys. Chem. Lett., 6, 401, 10.1021/jz5026323

Pistor, 2016, Sci. Rep., 6, 35973, 10.1038/srep35973

Lee, 2016, Cryst. Growth Des., 16, 4744, 10.1021/acs.cgd.6b00801

Kong, 2018, Nanoscale, 10, 8320, 10.1039/C8NR01352G

Kong, 2019, ACS Appl. Energy Mater., 2, 2948, 10.1021/acsaem.9b00322

Kong, 2019, Chem. Mater., 31, 4953, 10.1021/acs.chemmater.9b01707

Chen, 2019, CrystEngComm, 21, 1389, 10.1039/C8CE02111B

Straus, 2019, J. Am. Chem. Soc., 141, 11435, 10.1021/jacs.9b06055

Kim, 2017, Sci. Rep., 7, 4645, 10.1038/s41598-017-04690-w

Marronnier, 2018, ACS Nano, 12, 3477, 10.1021/acsnano.8b00267

Swarnkar, 2016, Science, 354, 92, 10.1126/science.aag2700

Zhao, 2018, J. Am. Chem. Soc., 140, 11716, 10.1021/jacs.8b06050

Protesescu, 2015, Nano Lett., 15, 3692, 10.1021/nl5048779

Liu, 2017, J. Am. Chem. Soc., 139, 16708, 10.1021/jacs.7b08628

Stoumpos, 2013, Cryst. Growth Des., 13, 2722, 10.1021/cg400645t

He, 2017, Adv. Mater., 29, 1700775, 10.1002/adma.201700775

Nakada, 2019, Molecules, 24, 626, 10.3390/molecules24030626

Quarti, 2014, J. Phys. Chem. Lett., 5, 279, 10.1021/jz402589q

Park, 2015, ACS Nano, 9, 2088, 10.1021/nn507345e

Grancini, 2015, Chem. Sci., 6, 7305, 10.1039/C5SC02542G

Guo, 2017, Phys. Rev. Mater., 1, 042401, 10.1103/PhysRevMaterials.1.042401

Misra, 2015, J. Phys. Chem. Lett., 6, 326, 10.1021/jz502642b