Probing crowd density through smartphones in city-scale mass gatherings
Tóm tắt
Từ khóa
Tài liệu tham khảo
BBC News (2011) Royal wedding: in numbers. http://www.bbc.co.uk/news/uk-13248642
Clarin.com (2010) Dos millones de personas, en un cierre inolvidable. http://edant.clarin.com/diario/2010/05/25/um/m-02199900.htm
RTVE (2010) Dos millones de personas recibieron a la Selección Española de Fútbol en Madrid. http://www.rtve.es/alacarta/videos/television/dos-millones-personas-recibieron-a-seleccion-espanola-futbol-madrid/828627/
Helbing D, Mukerji P: Crowd disasters as systemic failures: analysis of the love parade disaster. EPJ Data Sci 2012., 1: Article ID 7 Article ID 7
Tarlow P 4. In Event risk management and safety. Wiley, New York; 2002.
Getz D: Event studies: theory, research and policy for planned events. Elsevier, Amsterdam; 2007.
Johansson A, Batty M, Hayashi K, Al Bar O, Marcozzi D, Memish ZA: Crowd and environmental management during mass gatherings. Lancet Infect Dis 2012,12(2):150–156. 10.1016/S1473-3099(11)70287-0
Helbing D, Buzna L, Johansson A, Werner T: Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp Sci 2005, 39: 1–24. 10.1287/trsc.1040.0108
Hughes RL: The flow of human crowds. Annu Rev Fluid Mech 2003, 35: 169–182. http://www.annualreviews.org/doi/abs/10.1146/annurev.fluid.35.101101.161136 http://www.annualreviews.org/doi/abs/10.1146/annurev.fluid.35.101101.161136 10.1146/annurev.fluid.35.101101.161136
Nicholson C, Roebuck B: The investigation of the Hillsborough disaster by the health and safety executive. Saf Sci 1995,18(4):249–259. 10.1016/0925-7535(94)00034-Z
Au S, Great Britain H, Staff SE, Health GB, Executive S, Ltd RC (1993) Managing crowd safety in public venues: a study to generate guidance for venue owners and enforcing authority inspectors. HSE contract research report, HSE Books. http://books.google.ch/books?id=3osbPwAACAAJ
Wirz M, Franke T, Roggen D, Mitleton-Kelly E, Lukowicz P, Tröster G: Inferring and visualizing crowd conditions by collecting GPS location traces from pedestrians’ mobile phones for real-time crowd monitoring during city-scale mass gatherings. In Collaboration technologies and infrastructures (WETICE), 21st international conference on. IEEE Press, New York; 2012.
Batty M, Desyllas J, Duxbury E: The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades. Int J Geogr Inf Sci 2003,17(7):673–697. 10.1080/1365881031000135474
Lee R, Hughes R: Exploring trampling and crushing in a crowd. J Transp Eng 2005, 131: 575. 10.1061/(ASCE)0733-947X(2005)131:8(575)
Hsieh Y, Ngai K, Burkle F Jr, Hsu E: Epidemiological characteristics of human stampedes. Disaster Med Public Health Prep 2009,3(4):217. 10.1097/DMP.0b013e3181c5b4ba
Burkle F, Hsu E: Ram Janki temple: understanding human stampedes. Lancet 2011,377(9760):106–107. 10.1016/S0140-6736(10)60442-4
Krausz B, Bauckhage C: Loveparade 2010: automatic video analysis of a crowd disaster. Comput Vis Image Underst 2012,116(3):307–319. 10.1016/j.cviu.2011.08.006
Helbing D, Johansson A, Al-Abideen H: Dynamics of crowd disasters: an empirical study. Phys Rev E 2007.,75(4): Article ID 046109 Article ID 046109
Krausz B, Bauckhage C: Analyzing pedestrian behavior in crowds for automatic detection of congestions. In Computer vision workshops (ICCV workshops), 2011 IEEE international conference on. IEEE Press, New York; 2011:144–149.
Johansson A, Helbing D, Al-Abideen HZ, Al-Bosta S (2008) From crowd dynamics to crowd safety: a video-based analysis. ArXiv e-prints
Fruin J (1981) Crowd disasters - a systems evaluation of causes and countermeasures. Inc. US National Bureau of Standards, pub. NBSIR, 81–3261
Gong S, Loy CC, Xiang T: Security and surveillance. In Visual analysis of humans. Edited by: Moeslund TB, Hilton A, Krüger V, Sigal L. Springer, London; 2011.
Jacques J Jr, Musse S, Jung C: Crowd analysis using computer vision techniques. IEEE Signal Process Mag 2010, 27: 66–77.
Mehran R, Oyama A, Shah M: Abnormal crowd behavior detection using social force model. In Computer vision and pattern recognition. IEEE Press, New York; 2009.
Helbing D, Molnar P: Social force model for pedestrian dynamics. Phys Rev E 1995, 51: 4282–4286. 10.1103/PhysRevE.51.4282
Steffen B, Seyfried A: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Phys A, Stat Mech Appl 2010,389(9):1902–1910. 10.1016/j.physa.2009.12.015
Eagle N, Pentland A: Reality mining: sensing complex social systems. Pers Ubiquitous Comput 2006,10(4):255–268. 10.1007/s00779-005-0046-3
LaMarca A, Chawathe Y, et al.: Place lab: device positioning using radio beacons in the wild. Pervasive computing 2005.
Calabrese F, Colonna M, Lovisolo P, Parata D, Ratti C: Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans Intell Transp Syst 2011, 12: 141–151.
Becker R, Caceres R, Hanson K, Loh J, Urbanek S, Varshavsky A, Volinsky C: A tale of one city: using cellular network data for urban planning. IEEE Pervasive Comput 2011,10(4):18–26.
Couronne T, Olteanu Raimond A, Smoreda Z: Looking at spatiotemporal city dynamics through mobile phone lenses. In Network of the future, international conference on the. IEEE Press, New York; 2011.
Calabrese F, Pereira F, Di Lorenzo G, Liu L, Ratti C: The geography of taste: analyzing cell-phone mobility and social events. Lecture notes in computer science 6030. In Pervasive computing. Springer, Berlin; 2010:22–37.
Kim D, Kim Y, Estrin D, Srivastava M: Sensloc: sensing everyday places and paths using less energy. In Proc. of the 8th ACM conference on embedded networked sensor systems. ACM, New York; 2010.
Van Diggelen F: A-GPS: assisted GPS, GNSS, and SBAS. Artech House, Norwood; 2009.
Azizyan M, Constandache I, Choudhury RR: SurroundSense: mobile phone localization via ambience fingerprinting. In Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom ’09. ACM, New York; 2009:261–272.
Koshak N, Fouda A: Analyzing pedestrian movement in mataf using gps and gis to support space redesign. The 9th international conference on design and decision support systems in architecture and urban planning 2008.
Versichele M, Neutens T, Delafontaine M, de Weghe NV: The use of bluetooth for analysing spatiotemporal dynamics of human movement at mass events: a case study of the Ghent festivities. Appl Geogr 2012,32(2):208–220. 10.1016/j.apgeog.2011.05.011
Bandini S, Federici ML, Manzoni S: A qualitative evaluation of technologies and techniques for data collection on pedestrians and crowded situations. In Proceedings of the 2007 summer computer simulation conference, SCSC. Society for Computer Simulation International, San Diego; 2007:1057–1064.
Marana A, Da Fontoura Costa L, Lotufo R, Velastin S: Estimating crowd density with Minkowski fractal dimension. 6. Acoustics, speech, and signal processing, IEEE international conference on 1999, 3521–3524.
Ma R, Li L, Huang W, Tian Q: On pixel count based crowd density estimation for visual surveillance. 1. In Cybernetics and intelligent systems, IEEE conference on. IEEE Press, New York; 2004:170–173.
Wu X, Liang G, Lee K, Xu Y: Crowd density estimation using texture analysis and learning. In Robotics and biomimetics, ROBIO’06, IEEE international conference on. IEEE Press, New York; 2006:214–219.
Jones M, Snow D: Pedestrian detection using boosted features over many frames. In Pattern recognition, ICPR 2008, 19th international conference on. IEEE Press, New York; 2008:1–4.
Brostow G, Cipolla R: Unsupervised Bayesian detection of independent motion in crowds. 1. In Computer vision and pattern recognition, IEEE computer society conference on. IEEE Press, New York; 2006:594–601.
Reades J, Calabrese F, Sevtsuk A, Ratti C: Cellular census: explorations in urban data collection. IEEE Pervasive Comput 2007,6(3):30–38.
Morrison A, Bell M, Chalmers M: Visualisation of spectator activity at stadium events. In Information visualisation, 13th international conference. IEEE Press, New York; 2009:219–226.
Weidmann U: Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung). IVT, Zürich; 1992.
Helbing D: Derivation of a fundamental diagram for urban traffic flow. Eur Phys J B, Condens Matter Complex Syst 2009,70(2):229–241. 10.1140/epjb/e2009-00093-7
Jelić A, Appert-Rolland C, Lemercier S, Pettré J (2011) Properties of pedestrians walking in line-fundamental diagrams. Arxiv preprint arXiv:1111.5708 Jelić A, Appert-Rolland C, Lemercier S, Pettré J (2011) Properties of pedestrians walking in line-fundamental diagrams. Arxiv preprint arXiv:1111.5708
Daamen W, Hoogendoorn S: Experimental research of pedestrian walking behavior. Transp Res Rec 2003, 1828: 20–30. 10.3141/1828-03
Zhang J, Klingsch W, Schadschneider A, Seyfried A: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J Stat Mech Theory Exp 2012., 2012: Article ID P02002 Article ID P02002
Chattaraj U, Seyfried A, Chakroborty P (2009) Comparison of pedestrian fundamental diagram across cultures. ArXiv e-prints
Smith R: Density, velocity and flow relationships for closely packed crowds. Saf Sci 1995,18(4):321–327. 10.1016/0925-7535(94)00051-4
Johansson A: Constant-net-time headway as a key mechanism behind pedestrian flow dynamics. Phys Rev E 2009.,80(2): Article ID 026120 Article ID 026120
Seyfried A, Steffen B, Lippert T: Basics of modelling the pedestrian flow. Phys A, Stat Mech Appl 2006, 368: 232–238. 10.1016/j.physa.2005.11.052
Fang Z, Lo S, Lu J: On the relationship between crowd density and movement velocity. Fire Saf J 2003,38(3):271–283. 10.1016/S0379-7112(02)00058-9
Seyfried A, Steffen B, Klingsch W, Boltes M: The fundamental diagram of pedestrian movement revisited. J Stat Mech Theory Exp 2005., 2005: Article ID P10002 Article ID P10002
Schadschneider A, Klingsch W, Klüpfel H, Kretz T, Rogsch C, Seyfried A (2008) Evacuation dynamics: empirical results, modeling and applications. Arxiv preprint arXiv:0802.1620
Wiseman R: Quirkology: the curious science of everyday lives. Pan, London; 2008.
Wirz M, Roggen D, Tröster G: User acceptance study of a mobile system for assistance during emergency situations at large-scale events. In Human-centric computing (HumanCom), 3rd international conference on. IEEE Press, New York; 2010:1–6.
Warburton K, Lazarus J: Tendency-distance models of social cohesion in animal groups. J Theor Biol 1991,150(4):473–488. 10.1016/S0022-5193(05)80441-2
Moussaid M, Garnier S, Theraulaz G, Helbing D: Collective information processing and pattern formation in swarms, flocks, and crowds. Top Cogn Sci 2009,1(3):469–497. 10.1111/j.1756-8765.2009.01028.x
Willis A, Gjersoe N, Havard C, Kerridge J, Kukla R: Human movement behaviour in urban spaces: implications for the design and modelling of effective pedestrian environments. Environ Plan B, Plan Des 2004,31(6):805–828. 10.1068/b3060
Wirz M, Schläpfer P, Kjærgaard M, Roggen D, Feese S, Tröster G: Towards an online detection of pedestrian flocks in urban canyons by smoothed spatio-temporal clustering of GPS trajectories. In Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks. ACM, New York; 2011.