Probing autoxidation of oleic acid at air-water interface: A neglected and significant pathway for secondary organic aerosols formation
Tài liệu tham khảo
Albuquerque, 2014, The first step of biodiesel autoxidation by differential scanning calorimetry and DFT calculations, J. Therm. Anal. Calorim., 117, 799, 10.1007/s10973-014-3835-y
Banerjee, 2019, Influence of inlet capillary temperature on the microdroplet chemistry studied by mass spectrometry, J. Phys. Chem., 123, 7704, 10.1021/acs.jpca.9b05703
Berndt, 2017, Direct probing of criegee intermediates from gas-phase ozonolysis using chemical ionization mass spectrometry, J. Am. Chem. Soc., 139, 13387, 10.1021/jacs.7b05849
Bianchi, 2019, Highly oxygenated organic molecules (HOM) from gas-phase Autoxidation involving peroxy radicals: a key contributor to atmospheric aerosol, Chem. Rev., 119, 3472, 10.1021/acs.chemrev.8b00395
Brimberg, 1993, ON the kinetics OF the autoxidation OF fats .2. Monounsaturated substrates, J. Am. Oil Chem. Soc., 70, 1063, 10.1007/BF02632143
Dobson, 2000, Atmospheric aerosols as prebiotic chemical reactors, Proc. Natl. Acad. Sci. U. S. A, 97, 11864, 10.1073/pnas.200366897
Enami, 2017, Criegee chemistry on aqueous organic surfaces, J. Phys. Chem. Lett., 8, 1615, 10.1021/acs.jpclett.7b00434
Enami, 2017, Efficient scavenging of Criegee intermediates on water by surface-active cis-pinonic acid, Phys. Chem. Chem. Phys., 19, 17044, 10.1039/C7CP03869K
Enami, 2017, Criegee intermediates react with levoglucosan on water, J. Phys. Chem. Lett., 8, 3888, 10.1021/acs.jpclett.7b01665
Fan, 2020, Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China, Atmos. Chem. Phys., 20, 117, 10.5194/acp-20-117-2020
Gallimore, 2017, Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry, Atmos. Chem. Phys., 17, 14485, 10.5194/acp-17-14485-2017
Gallimore, 2017, Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition, J. Geophys. Res. Atmos., 122, 4364, 10.1002/2016JD026221
Gao, 2019, Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer-Villiger reactions, Chem. Sci., 10, 10974, 10.1039/C9SC05112K
Gao, 2019, Selective synthesis in microdroplets of 2-Phenyl-2,3-dihydrophthalazine-1,4-dione from phenyl hydrazine with phthalic anhydride or phthalic acid, Chem.-Eur. J., 25, 1466, 10.1002/chem.201805585
Giorio, 2017, Online quantification of criegee intermediates of alpha-pinene ozonolysis by stabilization with spin traps and proton-transfer reaction mass spectrometry detection, J. Am. Chem. Soc., 139, 3999, 10.1021/jacs.6b10981
Hearn, 2005, Ozonolysis of oleic acid particles: evidence for a surface reaction and secondary reactions involving Criegee intermediates, Phys. Chem. Chem. Phys., 7, 501, 10.1039/b414472d
Ho, 2011, Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in Pearl Delta River Region, China, Atmos. Chem. Phys., 11, 2197, 10.5194/acp-11-2197-2011
Hodzic, 2020, Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607, 10.5194/acp-20-4607-2020
Huang, 2021, Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface, Chem. Sci., 12, 2242, 10.1039/D0SC05625A
Huang, 2020, Abundant biogenic oxygenated organic aerosol in atmospheric coarse particles: plausible sources and atmospheric implications, Environ. Sci. Technol., 54, 1425, 10.1021/acs.est.9b06311
Islam, 2019, Environmental and toxicological assessment of nanodiamond-like materials derived from carbonaceous aerosols, Sci. Total Environ., 679, 209, 10.1016/j.scitotenv.2019.04.446
Jorga, 2020, Measurement of formation rates of secondary aerosol in the ambient urban atmosphere using a dual smog chamber system, Environ. Sci. Technol., 54, 1336, 10.1021/acs.est.9b03479
Kim, 2016, Charging and coagulation of radioactive and nonradioactive particles in the atmosphere, Atmos. Chem. Phys., 16, 3449, 10.5194/acp-16-3449-2016
King, 2009, Oxidation of oleic acid at the air-water interface and its potential effects on cloud critical supersaturations, Phys. Chem. Chem. Phys., 11, 7699, 10.1039/b906517b
King, 2004, Laser tweezers Raman study of optically trapped aerosol droplets of Seawater and oleic acid reacting with ozone: implications for cloud-droplet properties, J. Am. Chem. Soc., 126, 16710, 10.1021/ja044717o
Kramer, 2019, formation of polycyclic aromatic hydrocarbon oxidation products in alpha-pinene secondary organic aerosol particles formed through ozonolysis, Environ. Sci. Technol., 53, 6669, 10.1021/acs.est.9b01732
Kusaka, 2021, The photochemical reaction of phenol becomes ultrafast at the air–water interface, Nat. Chem., 1
Lamberson, 2014, Unusual kinetic isotope effects of deuterium reinforced polyunsaturated fatty acids in tocopherol-mediated free radical chain oxidations, J. Am. Chem. Soc., 136, 838, 10.1021/ja410569g
Lee, 2019, Spontaneous generation of hydrogen peroxide from aqueous microdroplets, Proc. Natl. Acad. Sci. U. S. A, 116, 19294, 10.1073/pnas.1911883116
Li, 2018, Self-catalytic reaction of SO3 and NH3 to produce sulfamic acid and its implication to atmospheric particle formation, J. Am. Chem. Soc., 140, 11020, 10.1021/jacs.8b04928
Li, 2020, 703
Lyu, 2020, In situ measurements of molecular markers facilitate understanding of dynamic sources of atmospheric organic aerosols, Environ. Sci. Technol., 54, 11058, 10.1021/acs.est.0c02277
Møller, 2020, Atmospheric autoxidation of amines, Environ. Sci. Technol., 54, 11087, 10.1021/acs.est.0c03937
Møller, 2019, Stereoselectivity in atmospheric autoxidation, J. Phys. Chem. Lett., 10, 6260, 10.1021/acs.jpclett.9b01972
Ma, 2020, Autoxidation mechanism for atmospheric oxidation of tertiary amines: implications for secondary organic aerosol formation, Chemosphere, 129207
Michael, 2009, Highly charged cloud particles in the atmosphere of Venus, J. Geophys. Res.-Planets, 114, 10.1029/2008JE003258
Nam, 2017, Abiotic production of sugar phosphates and uridine ribonudeoside in aqueous microdroplets, Proc. Natl. Acad. Sci. U. S. A, 114, 12396, 10.1073/pnas.1714896114
Niu, 2017, Indoor secondary organic aerosols formation from ozonolysis of monoterpene: an example of D-limonene with ammonia and potential. impacts on pulmonary inflammations, Sci. Total Environ., 579, 212, 10.1016/j.scitotenv.2016.11.018
Ostrom, 2017, Modeling the role of highly oxidized multifunctional organic molecules for the growth of new particles over the boreal forest region, Atmos. Chem. Phys., 17, 8887, 10.5194/acp-17-8887-2017
Pfrang, 2010, Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB): oxidation of oleic acid by ozone, Atmos. Chem. Phys., 10, 4537, 10.5194/acp-10-4537-2010
Praske, 2018, Atmospheric autoxidation is increasingly important in urban and suburban North America, Proc. Natl. Acad. Sci. U. S. A, 115, 64, 10.1073/pnas.1715540115
Qiu, 2020, Proton-catalyzed decomposition of a-hydroxyalkyl-hydroperoxides in water, Environ. Sci. Technol., 54, 10561, 10.1021/acs.est.0c03438
Rossignol, 2016, Atmospheric photochemistry at a fatty acid-coated air-water interface, Science, 353, 699, 10.1126/science.aaf3617
Ruiz-Lopez, 2019, A new mechanism of acid rain generation from HOSO at the air-water interface, J. Am. Chem. Soc., 141, 16564, 10.1021/jacs.9b07912
Scales, 2004, Electrodynamic structure of charged dust clouds in the earth's middle atmosphere, New J. Phys., 6, 10.1088/1367-2630/6/1/012
Shang, 2016, SO2 uptake on oleic acid: a new formation pathway of organosulfur compounds in the atmosphere, Environ. Sci. Technol. Lett., 3, 67, 10.1021/acs.estlett.6b00006
Shiraiwa, 2010, Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone, Atmos. Chem. Phys., 10, 3673, 10.5194/acp-10-3673-2010
Vaida, 2017, Prebiotic phosphorylation enabled by microdroplets, Proc. Natl. Acad. Sci. Unit. States Am., 114, 12359, 10.1073/pnas.1717373114
Venter, 2006, Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry, Anal. Chem., 78, 8549, 10.1021/ac0615807
Virtanen, 2010, An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824, 10.1038/nature09455
Wang, 2011, The role of nebulizer gas flow in electrosonic spray ionization (ESSI), J. Am. Soc. Mass Spectrom., 22, 1234, 10.1007/s13361-011-0124-x
Wei, 2020, Accelerated reaction kinetics in microdroplets: overview and recent developments, Annu. Rev. Phys. Chem., 71, 31, 10.1146/annurev-physchem-121319-110654
Yan, 2017, Two-phase reactions in microdroplets without the use of phase-transfer catalysts, Angew. Chem. Int. Ed., 56, 3562, 10.1002/anie.201612308
Yan, 2018, Preparative microdroplet synthesis of carboxylic acids from aerobic oxidation of aldehydes, Chem. Sci., 9, 5207, 10.1039/C8SC01580E
Yao, 2019, Multiphase reactions between secondary organic aerosol and sulfur dioxide: kinetics and contributions to sulfate formation and aerosol aging, Environ. Sci. Technol. Lett., 6, 768, 10.1021/acs.estlett.9b00657
Zhang, 2018, Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air-water interface, Proc. Natl. Acad. Sci. U. S. A, 115, 3255, 10.1073/pnas.1722323115
Zhang, 2017, Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface, Chem. Phys. Lett., 683, 76, 10.1016/j.cplett.2017.05.051
Zhong, 2020, Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry, Nat. Commun., 11, 10.1038/s41467-020-14877-x
Zhu, 2020, Hydration, solvation, and isomerization of methylglyoxal at the air/water interface: new mechanistic pathways, J. Am. Chem. Soc., 142, 5574, 10.1021/jacs.9b09870
Zhu, 2019, Organosulfur compounds formed from heterogeneous reaction between SO2 and particulate-bound unsaturated fatty acids in ambient air, Environ. Sci. Technol. Lett., 6, 318, 10.1021/acs.estlett.9b00218