Probabilistic genotyping software: An overview

Forensic Science International: Genetics - Tập 38 - Trang 219-224 - 2019
Michael D. Coble1, Jo-Anne Bright2
1Center for Human Identification, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
2Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand

Tài liệu tham khảo

Bille, 2013, Application of random match probability calculations to mixed STR profiles, J. Forensic Sci., 58, 474, 10.1111/1556-4029.12067 Evett, 1991, A guide to interpreting single locus profiles of DNA mixtures in forensic cases, J. Forensic Sci. Soc., 31, 41, 10.1016/S0015-7368(91)73116-2 Weir, 1997, Interpreting DNA mixtures, J. Forensic Sci., 42, 213, 10.1520/JFS14100J Bieber, 2016, Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion, BMC Genet., 17, 125, 10.1186/s12863-016-0429-7 Clayton, 1998, Analysis and interpretation of mixed forensic stains using DNA STR profiling, Forensic Sci. Int., 91, 55, 10.1016/S0379-0738(97)00175-8 Torres, 2003, DNA mixtures in forensic casework: a 4-year retrospective study, Forensic Sci. Int., 134, 180, 10.1016/S0379-0738(03)00161-0 Zedlewski, 2006, DNA analysis for “Minor” crimes: a major benefit for law enforcement, NIJ J. Butler, 2018, NIST interlaboratory studies involving DNA mixtures (MIX05 and MIX13): variation observed and lessons learned, Forensic Sci. Int. Genet., 37, 81, 10.1016/j.fsigen.2018.07.024 Gusmão, 2006, DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis, Forensic Sci. Int., 157, 187, 10.1016/j.forsciint.2005.04.002 Gill, 2008, National recommendations of the technical UK DNA working group on mixture interpretation for the NDNAD and for court going purposes, Forensic Sci. Int. Genet., 2, 76, 10.1016/j.fsigen.2007.08.008 Schneider, 2009, The German Stain Commission: recommendations for the interpretation of mixed stains, Int. J. Legal Med., 123, 1, 10.1007/s00414-008-0244-4 Morling, 2007, Interpretation of DNA mixtures—European consensus on principles, Forensic Sci. Int. Genet., 1, 291, 10.1016/j.fsigen.2007.06.007 Stringer, 2009, Interpretation of DNA mixtures—Australian and New Zealand consensus on principles, Forensic Sci. Int. Genet., 3, 144, 10.1016/j.fsigen.2008.09.003 Budowle, 2009, Mixture interpretation: defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework, J. Forensic Sci., 54, 810, 10.1111/j.1556-4029.2009.01046.x 2010 2017 Budowle, 1995, Validation and population studies of the loci LDLR, GYPA, HBGG, D7S8, and Gc (PM loci) and HLA-DQ-alpha using a multiplex amplification and typing procedure, J. Forensic Sci., 40, 45, 10.1520/JFS13758J Moretti, 2001, Validation of short tandem repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples, J. Forensic Sci., 46, 647, 10.1520/JFS15018J Evett, 1998, Taking account of peak areas when interpreting mixed DNA profiles, J. Forensic Sci., 43, 62, 10.1520/JFS16091J Gill, 1998, Interpreting simple STR mixtures using allelic peak areas, Forensic Sci. Int., 91, 41, 10.1016/S0379-0738(97)00174-6 Perlin, 2001, Linear mixture analysis: a mathematical approach to resolving mixed DNA samples, J. Forensic Sci., 46, 1372, 10.1520/JFS15158J Kelly, 2014, A comparison of statistical models for the analysis of complex forensic DNA profiles, Sci. Justice, 54, 66, 10.1016/j.scijus.2013.07.003 Bright, 2009, Examination of the variability in mixed DNA profile parameters for the identifiler multiplex, Forensic Sci. Int. Genet., 4, 111, 10.1016/j.fsigen.2009.07.002 Bright, 2012, A comparison of stochastic variation in mixed and unmixed casework and synthetic samples, Forensic Sci. Int. Genet., 6, 180, 10.1016/j.fsigen.2011.04.010 Buckleton, 2008, A discussion of the merits of random man not excluded and likelihood ratios, Forensic Sci. Int. Genet., 2, 343, 10.1016/j.fsigen.2008.05.005 1996, National research council II. National research council committee on DNA forensic science Buckleton, 2006, Is the 2p rule always conservative?, Forensic Sci. Int., 159, 206, 10.1016/j.forsciint.2005.08.004 Gill, 2007, LoComatioN: a software tool for the analysis of low copy number DNA profiles, Forensic Sci. Int., 166, 128, 10.1016/j.forsciint.2006.04.016 Gill, 2000, An investigation of the rigor of interpretation rules for STR’s derived from less than 100pg of DNA, Forensic Sci. Int., 112, 17, 10.1016/S0379-0738(00)00158-4 Bill, 2005, PENDULUM - A guideline based approach to the interpretation of STR mixtures, Forensic Sci. Int., 148, 181, 10.1016/j.forsciint.2004.06.037 Gill, 2012, DNA commission of the International Society of Forensic Genetics: recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods, Forensic Sci. Int. Genet., 6, 679, 10.1016/j.fsigen.2012.06.002 Tvedebrink, 2009, Estimating the probability of allelic drop-out of STR alleles in forensic genetics, Forensic Sci. Int. Genet., 3, 222, 10.1016/j.fsigen.2009.02.002 Haned, 2011, Estimating drop-out probabilities in forensic DNA samples: a simulation approach to evaluate different models, Forensic Sci. Int. Genet., 5, 525, 10.1016/j.fsigen.2010.12.002 Tvedebrink, 2012, Allelic drop-out probabilities estimated by logistic regression—further considerations and practical implementation, Forensic Sci. Int. Genet., 6, 263, 10.1016/j.fsigen.2011.06.004 Buckleton, 2014, Utilising allelic dropout probabilities estimated by logistic regression in casework, Forensic Sci. Int. Genet., 9, 9, 10.1016/j.fsigen.2013.07.001 Lohmueller, 2014, Analysis of allelic drop-out using the Identifiler® and PowerPlex® 16 forensic STR typing systems, Forensic Sci. Int. Genet., 12, 1, 10.1016/j.fsigen.2014.04.003 Cowell, 2007, A gamma model for DNA mixture analyses, Bayesian Anal., 2, 333, 10.1214/07-BA214 Perlin, 2011, Validating TrueAllele® DNA mixture interpretation, J. Forensic Sci., 56, 1430, 10.1111/j.1556-4029.2011.01859.x Taylor, 2013, The interpretation of single source and mixed DNA profiles, Forensic Sci. Int. Genet., 7, 516, 10.1016/j.fsigen.2013.05.011 Puch-Solis, 2013, Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters, Forensic Sci. Int. Genet., 7, 555, 10.1016/j.fsigen.2013.05.009 Bright, 2013, Developing allelic and stutter peak height models for a continuous method of DNA interpretation, Forensic Sci. Int. Genet., 7, 296, 10.1016/j.fsigen.2012.11.013 2015 Bright, 2017, The paradigm shift in DNA profile interpretation, Forensic Sci. Int. Genet., 31, e24, 10.1016/j.fsigen.2017.08.005 Prieto, 2014, Euroforgen-NoE collaborative exercise on LRmix to demonstrate standardization of the interpretation of complex DNA profiles, Forensic Sci. Int. Genet., 9, 47, 10.1016/j.fsigen.2013.10.011 Bright, 2018, Internal validation of STRmix™ – a multi laboratory response to PCAST, Forensic Sci. Int. Genet., 34, 11, 10.1016/j.fsigen.2018.01.003 Barrio, 2018, GHEP-ISFG collaborative exercise on mixture profiles (GHEP-MIX06). Reporting conclusions: results and evaluation, Forensic Sci. Int. Genet., 35, 156, 10.1016/j.fsigen.2018.05.005 Coble, 2016, DNA Commission of the International Society for Forensic Genetics: recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications, Forensic Sci. Int. Genet., 25, 191, 10.1016/j.fsigen.2016.09.002 2018 Haned, 2016, Validation of probabilistic genotyping software for use in forensic DNA casework: definitions and illustrations, Sci. Justice, 56, 104, 10.1016/j.scijus.2015.11.007 Bright, 2016, Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles, Forensic Sci. Int. Genet., 23, 226, 10.1016/j.fsigen.2016.05.007 Götz, 2017, GenoProof mixture 3—new software and process to resolve complex DNA mixtures, Forensic Sci. Int. Genet. Suppl. Ser., 6, 10.1016/j.fsigss.2017.09.212 Mitchell, 2012, Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in, Forensic Sci. Int. Genet., 6, 749, 10.1016/j.fsigen.2012.08.007 Moretti, 2017, Internal validation of STRmix for the interpretation of single source and mixed DNA profiles, Forensic Sci. Int. Genet., 29, 126, 10.1016/j.fsigen.2017.04.004 Greenspoon, 2015, Establishing the limits of TrueAllele® casework: a validation study, J. Forensic Sci., 60, 1263, 10.1111/1556-4029.12810 2016 2016 Jeanguenat, 2017, Strengthening forensic DNA decision making through a better understanding of the influence of cognitive bias, Sci. Justice, 57, 415, 10.1016/j.scijus.2017.07.005 Cooper, 2015, Investigating a common approach to DNA profile interpretation using probabilistic software, Forensic Sci. Int. Genet., 16, 121, 10.1016/j.fsigen.2014.12.009 Bright, 2015, The variability in likelihood ratios due to different mechanisms, Forensic Sci. Int. Genet., 14, 187, 10.1016/j.fsigen.2014.10.013 Buckleton, 2018, NIST interlaboratory studies involving DNA mixtures (MIX13): a modern analysis, Forensic Sci. Int. Genet., 37, 172, 10.1016/j.fsigen.2018.08.014 Bright, 2015, A series of recommended tests when validating probabilistic DNA profile interpretation software, Forensic Sci. Int. Genet., 14, 125, 10.1016/j.fsigen.2014.09.019 Bille, 2014, Comparison of the performance of different models for the interpretation of low level mixed DNA profiles, Electrophoresis, 35, 3125, 10.1002/elps.201400110 Alladio, 2018, DNA mixtures interpretation – a proof-of-concept multi-software comparison highlighting different probabilistic methods’ performances on challenging samples, Forensic Sci. Int. Genet., 37, 143, 10.1016/j.fsigen.2018.08.002 Bleka, 2016, A comparative study of qualitative and quantitative models used to interpret complex STR DNA profiles, Forensic Sci. Int. Genet., 25, 85, 10.1016/j.fsigen.2016.07.016 Frye v The United States of America, 54 AppDC 46, 293Fed 1013 (1923). 1923. Daubert et al. v Merrell Dow Pharmaceuticals Inc., 509 US 579 (1993). 1993. Taylor, 2014, Interpreting forensic DNA profiling evidence without specifying the number of contributors, Forensic Sci. Int. Genet., 13, 269, 10.1016/j.fsigen.2014.08.014 Slooten, 2018, Contributors are a nuisance (parameter) for DNA mixture evidence evaluation, Forensic Sci. Int. Genet., 37, 10.1016/j.fsigen.2018.05.004 Taylor, 2014, Using continuous DNA interpretation methods to revisit likelihood ratio behaviour, Forensic Sci. Int. Genet., 11, 144, 10.1016/j.fsigen.2014.03.008 Churchill, 2016, Evaluation of the illumina® Beta version ForenSeq™ DNA signature prep kit for use in genetic profiling, Forensic Sci. Int. Genet., 20, 20, 10.1016/j.fsigen.2015.09.009 Van Neste, 2014, My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing, Forensic Sci. Int. Genet., 9, 1, 10.1016/j.fsigen.2013.10.012 Gettings, 2015, STR allele sequence variation: current knowledge and future issues, Forensic Sci. Int. Genet., 18, 118, 10.1016/j.fsigen.2015.06.005 Bleka, 2017, Open source software EuroForMix can be used to analyse complex SNP mixtures, Forensic Sci. Int. Genet., 31, 105, 10.1016/j.fsigen.2017.08.001 Aponte, 2015, Sequence-based analysis of stutter at STR loci: characterization and utility, Forensic Sci. Int. Genet. Suppl. Ser., 5, 10.1016/j.fsigss.2015.09.181 Holland, 2011, Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy, Croat. Med. J., 52, 299, 10.3325/cmj.2011.52.299 Vohr, 2017, A phylogenetic approach for haplotype analysis of sequence data from complex mitochondrial mixtures, Forensic Sci. Int. Genet., 30, 93, 10.1016/j.fsigen.2017.05.007 Churchill, 2018, Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples, Int. J. Legal Med., 132, 1263, 10.1007/s00414-018-1799-3 Egeland, 2011, A statistical framework for the interpretation of mtDNA mixtures: forensic and medical applications, PLoS One, 6, 10.1371/journal.pone.0026723 Pereira, 2018, Sequencing of mitochondrial genomes using the precision ID mtDNA whole genome panel, Electrophoresis, 10.1002/elps.201800088 Taylor, 2018, Using probabilistic theory to develop interpretation guidelines for Y-STR profiles, Forensic Sci. Int.: Genet., 21, 22, 10.1016/j.fsigen.2015.11.010 Andersen, 2019, Y-profile evidence: close paternal relatives and mixtures, Forensic Sci. Int. Genet., 38, 48, 10.1016/j.fsigen.2018.10.004 Gill, 2015, Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches - twenty years of research anddevelopment, Forensic Sci. Int. Genet., 18, 100, 10.1016/j.fsigen.2015.03.014 Buckleton, 2018, The probabilistic genotyping software STRmix: utility and evidence for its validity, J. Forensic Sci., 10.1111/1556-4029.13898 Taylor, 2015, Do low template DNA profiles have useful quantitative data?, Forensic Sci. Int. Genet., 16, 13, 10.1016/j.fsigen.2014.11.001