Probabilistic genotyping software: An overview
Tài liệu tham khảo
Bille, 2013, Application of random match probability calculations to mixed STR profiles, J. Forensic Sci., 58, 474, 10.1111/1556-4029.12067
Evett, 1991, A guide to interpreting single locus profiles of DNA mixtures in forensic cases, J. Forensic Sci. Soc., 31, 41, 10.1016/S0015-7368(91)73116-2
Weir, 1997, Interpreting DNA mixtures, J. Forensic Sci., 42, 213, 10.1520/JFS14100J
Bieber, 2016, Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion, BMC Genet., 17, 125, 10.1186/s12863-016-0429-7
Clayton, 1998, Analysis and interpretation of mixed forensic stains using DNA STR profiling, Forensic Sci. Int., 91, 55, 10.1016/S0379-0738(97)00175-8
Torres, 2003, DNA mixtures in forensic casework: a 4-year retrospective study, Forensic Sci. Int., 134, 180, 10.1016/S0379-0738(03)00161-0
Zedlewski, 2006, DNA analysis for “Minor” crimes: a major benefit for law enforcement, NIJ J.
Butler, 2018, NIST interlaboratory studies involving DNA mixtures (MIX05 and MIX13): variation observed and lessons learned, Forensic Sci. Int. Genet., 37, 81, 10.1016/j.fsigen.2018.07.024
Gusmão, 2006, DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis, Forensic Sci. Int., 157, 187, 10.1016/j.forsciint.2005.04.002
Gill, 2008, National recommendations of the technical UK DNA working group on mixture interpretation for the NDNAD and for court going purposes, Forensic Sci. Int. Genet., 2, 76, 10.1016/j.fsigen.2007.08.008
Schneider, 2009, The German Stain Commission: recommendations for the interpretation of mixed stains, Int. J. Legal Med., 123, 1, 10.1007/s00414-008-0244-4
Morling, 2007, Interpretation of DNA mixtures—European consensus on principles, Forensic Sci. Int. Genet., 1, 291, 10.1016/j.fsigen.2007.06.007
Stringer, 2009, Interpretation of DNA mixtures—Australian and New Zealand consensus on principles, Forensic Sci. Int. Genet., 3, 144, 10.1016/j.fsigen.2008.09.003
Budowle, 2009, Mixture interpretation: defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework, J. Forensic Sci., 54, 810, 10.1111/j.1556-4029.2009.01046.x
2010
2017
Budowle, 1995, Validation and population studies of the loci LDLR, GYPA, HBGG, D7S8, and Gc (PM loci) and HLA-DQ-alpha using a multiplex amplification and typing procedure, J. Forensic Sci., 40, 45, 10.1520/JFS13758J
Moretti, 2001, Validation of short tandem repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples, J. Forensic Sci., 46, 647, 10.1520/JFS15018J
Evett, 1998, Taking account of peak areas when interpreting mixed DNA profiles, J. Forensic Sci., 43, 62, 10.1520/JFS16091J
Gill, 1998, Interpreting simple STR mixtures using allelic peak areas, Forensic Sci. Int., 91, 41, 10.1016/S0379-0738(97)00174-6
Perlin, 2001, Linear mixture analysis: a mathematical approach to resolving mixed DNA samples, J. Forensic Sci., 46, 1372, 10.1520/JFS15158J
Kelly, 2014, A comparison of statistical models for the analysis of complex forensic DNA profiles, Sci. Justice, 54, 66, 10.1016/j.scijus.2013.07.003
Bright, 2009, Examination of the variability in mixed DNA profile parameters for the identifiler multiplex, Forensic Sci. Int. Genet., 4, 111, 10.1016/j.fsigen.2009.07.002
Bright, 2012, A comparison of stochastic variation in mixed and unmixed casework and synthetic samples, Forensic Sci. Int. Genet., 6, 180, 10.1016/j.fsigen.2011.04.010
Buckleton, 2008, A discussion of the merits of random man not excluded and likelihood ratios, Forensic Sci. Int. Genet., 2, 343, 10.1016/j.fsigen.2008.05.005
1996, National research council II. National research council committee on DNA forensic science
Buckleton, 2006, Is the 2p rule always conservative?, Forensic Sci. Int., 159, 206, 10.1016/j.forsciint.2005.08.004
Gill, 2007, LoComatioN: a software tool for the analysis of low copy number DNA profiles, Forensic Sci. Int., 166, 128, 10.1016/j.forsciint.2006.04.016
Gill, 2000, An investigation of the rigor of interpretation rules for STR’s derived from less than 100pg of DNA, Forensic Sci. Int., 112, 17, 10.1016/S0379-0738(00)00158-4
Bill, 2005, PENDULUM - A guideline based approach to the interpretation of STR mixtures, Forensic Sci. Int., 148, 181, 10.1016/j.forsciint.2004.06.037
Gill, 2012, DNA commission of the International Society of Forensic Genetics: recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods, Forensic Sci. Int. Genet., 6, 679, 10.1016/j.fsigen.2012.06.002
Tvedebrink, 2009, Estimating the probability of allelic drop-out of STR alleles in forensic genetics, Forensic Sci. Int. Genet., 3, 222, 10.1016/j.fsigen.2009.02.002
Haned, 2011, Estimating drop-out probabilities in forensic DNA samples: a simulation approach to evaluate different models, Forensic Sci. Int. Genet., 5, 525, 10.1016/j.fsigen.2010.12.002
Tvedebrink, 2012, Allelic drop-out probabilities estimated by logistic regression—further considerations and practical implementation, Forensic Sci. Int. Genet., 6, 263, 10.1016/j.fsigen.2011.06.004
Buckleton, 2014, Utilising allelic dropout probabilities estimated by logistic regression in casework, Forensic Sci. Int. Genet., 9, 9, 10.1016/j.fsigen.2013.07.001
Lohmueller, 2014, Analysis of allelic drop-out using the Identifiler® and PowerPlex® 16 forensic STR typing systems, Forensic Sci. Int. Genet., 12, 1, 10.1016/j.fsigen.2014.04.003
Cowell, 2007, A gamma model for DNA mixture analyses, Bayesian Anal., 2, 333, 10.1214/07-BA214
Perlin, 2011, Validating TrueAllele® DNA mixture interpretation, J. Forensic Sci., 56, 1430, 10.1111/j.1556-4029.2011.01859.x
Taylor, 2013, The interpretation of single source and mixed DNA profiles, Forensic Sci. Int. Genet., 7, 516, 10.1016/j.fsigen.2013.05.011
Puch-Solis, 2013, Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters, Forensic Sci. Int. Genet., 7, 555, 10.1016/j.fsigen.2013.05.009
Bright, 2013, Developing allelic and stutter peak height models for a continuous method of DNA interpretation, Forensic Sci. Int. Genet., 7, 296, 10.1016/j.fsigen.2012.11.013
2015
Bright, 2017, The paradigm shift in DNA profile interpretation, Forensic Sci. Int. Genet., 31, e24, 10.1016/j.fsigen.2017.08.005
Prieto, 2014, Euroforgen-NoE collaborative exercise on LRmix to demonstrate standardization of the interpretation of complex DNA profiles, Forensic Sci. Int. Genet., 9, 47, 10.1016/j.fsigen.2013.10.011
Bright, 2018, Internal validation of STRmix™ – a multi laboratory response to PCAST, Forensic Sci. Int. Genet., 34, 11, 10.1016/j.fsigen.2018.01.003
Barrio, 2018, GHEP-ISFG collaborative exercise on mixture profiles (GHEP-MIX06). Reporting conclusions: results and evaluation, Forensic Sci. Int. Genet., 35, 156, 10.1016/j.fsigen.2018.05.005
Coble, 2016, DNA Commission of the International Society for Forensic Genetics: recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications, Forensic Sci. Int. Genet., 25, 191, 10.1016/j.fsigen.2016.09.002
2018
Haned, 2016, Validation of probabilistic genotyping software for use in forensic DNA casework: definitions and illustrations, Sci. Justice, 56, 104, 10.1016/j.scijus.2015.11.007
Bright, 2016, Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles, Forensic Sci. Int. Genet., 23, 226, 10.1016/j.fsigen.2016.05.007
Götz, 2017, GenoProof mixture 3—new software and process to resolve complex DNA mixtures, Forensic Sci. Int. Genet. Suppl. Ser., 6, 10.1016/j.fsigss.2017.09.212
Mitchell, 2012, Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in, Forensic Sci. Int. Genet., 6, 749, 10.1016/j.fsigen.2012.08.007
Moretti, 2017, Internal validation of STRmix for the interpretation of single source and mixed DNA profiles, Forensic Sci. Int. Genet., 29, 126, 10.1016/j.fsigen.2017.04.004
Greenspoon, 2015, Establishing the limits of TrueAllele® casework: a validation study, J. Forensic Sci., 60, 1263, 10.1111/1556-4029.12810
2016
2016
Jeanguenat, 2017, Strengthening forensic DNA decision making through a better understanding of the influence of cognitive bias, Sci. Justice, 57, 415, 10.1016/j.scijus.2017.07.005
Cooper, 2015, Investigating a common approach to DNA profile interpretation using probabilistic software, Forensic Sci. Int. Genet., 16, 121, 10.1016/j.fsigen.2014.12.009
Bright, 2015, The variability in likelihood ratios due to different mechanisms, Forensic Sci. Int. Genet., 14, 187, 10.1016/j.fsigen.2014.10.013
Buckleton, 2018, NIST interlaboratory studies involving DNA mixtures (MIX13): a modern analysis, Forensic Sci. Int. Genet., 37, 172, 10.1016/j.fsigen.2018.08.014
Bright, 2015, A series of recommended tests when validating probabilistic DNA profile interpretation software, Forensic Sci. Int. Genet., 14, 125, 10.1016/j.fsigen.2014.09.019
Bille, 2014, Comparison of the performance of different models for the interpretation of low level mixed DNA profiles, Electrophoresis, 35, 3125, 10.1002/elps.201400110
Alladio, 2018, DNA mixtures interpretation – a proof-of-concept multi-software comparison highlighting different probabilistic methods’ performances on challenging samples, Forensic Sci. Int. Genet., 37, 143, 10.1016/j.fsigen.2018.08.002
Bleka, 2016, A comparative study of qualitative and quantitative models used to interpret complex STR DNA profiles, Forensic Sci. Int. Genet., 25, 85, 10.1016/j.fsigen.2016.07.016
Frye v The United States of America, 54 AppDC 46, 293Fed 1013 (1923). 1923.
Daubert et al. v Merrell Dow Pharmaceuticals Inc., 509 US 579 (1993). 1993.
Taylor, 2014, Interpreting forensic DNA profiling evidence without specifying the number of contributors, Forensic Sci. Int. Genet., 13, 269, 10.1016/j.fsigen.2014.08.014
Slooten, 2018, Contributors are a nuisance (parameter) for DNA mixture evidence evaluation, Forensic Sci. Int. Genet., 37, 10.1016/j.fsigen.2018.05.004
Taylor, 2014, Using continuous DNA interpretation methods to revisit likelihood ratio behaviour, Forensic Sci. Int. Genet., 11, 144, 10.1016/j.fsigen.2014.03.008
Churchill, 2016, Evaluation of the illumina® Beta version ForenSeq™ DNA signature prep kit for use in genetic profiling, Forensic Sci. Int. Genet., 20, 20, 10.1016/j.fsigen.2015.09.009
Van Neste, 2014, My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing, Forensic Sci. Int. Genet., 9, 1, 10.1016/j.fsigen.2013.10.012
Gettings, 2015, STR allele sequence variation: current knowledge and future issues, Forensic Sci. Int. Genet., 18, 118, 10.1016/j.fsigen.2015.06.005
Bleka, 2017, Open source software EuroForMix can be used to analyse complex SNP mixtures, Forensic Sci. Int. Genet., 31, 105, 10.1016/j.fsigen.2017.08.001
Aponte, 2015, Sequence-based analysis of stutter at STR loci: characterization and utility, Forensic Sci. Int. Genet. Suppl. Ser., 5, 10.1016/j.fsigss.2015.09.181
Holland, 2011, Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy, Croat. Med. J., 52, 299, 10.3325/cmj.2011.52.299
Vohr, 2017, A phylogenetic approach for haplotype analysis of sequence data from complex mitochondrial mixtures, Forensic Sci. Int. Genet., 30, 93, 10.1016/j.fsigen.2017.05.007
Churchill, 2018, Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples, Int. J. Legal Med., 132, 1263, 10.1007/s00414-018-1799-3
Egeland, 2011, A statistical framework for the interpretation of mtDNA mixtures: forensic and medical applications, PLoS One, 6, 10.1371/journal.pone.0026723
Pereira, 2018, Sequencing of mitochondrial genomes using the precision ID mtDNA whole genome panel, Electrophoresis, 10.1002/elps.201800088
Taylor, 2018, Using probabilistic theory to develop interpretation guidelines for Y-STR profiles, Forensic Sci. Int.: Genet., 21, 22, 10.1016/j.fsigen.2015.11.010
Andersen, 2019, Y-profile evidence: close paternal relatives and mixtures, Forensic Sci. Int. Genet., 38, 48, 10.1016/j.fsigen.2018.10.004
Gill, 2015, Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches - twenty years of research anddevelopment, Forensic Sci. Int. Genet., 18, 100, 10.1016/j.fsigen.2015.03.014
Buckleton, 2018, The probabilistic genotyping software STRmix: utility and evidence for its validity, J. Forensic Sci., 10.1111/1556-4029.13898
Taylor, 2015, Do low template DNA profiles have useful quantitative data?, Forensic Sci. Int. Genet., 16, 13, 10.1016/j.fsigen.2014.11.001