Probabilistic analysis of land subsidence due to pumping by Biot poroelasticity and random field theory
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baecher GB, Christian JT (2005) Reliability and statistics in geotechnical engineering. John Wiley and Sons
Barucq H, Madaune-Tort M, Saint-Macary P (2005) On nonlinear Biot’s consolidation models. Nonlinear Anal. Theory Methods Appl. 63(5-7):e985–e995. https://doi.org/10.1016/j.na.2004.12.010
Bear J, Corapcioglu MY (1981) A mathematical model for consolidation in a thermoelastic aquifer due to hot water injection or pumping. Water Resour. Res. 17(3):723–736. https://doi.org/10.1029/WR017i003p00723
Biot MA (1941) General theory of three-dimensional consolidation. J. App. Phys. 12(2):155–164. https://doi.org/10.1063/1.1712886
Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J. App. Phys. 26(2):182–185. https://doi.org/10.1063/1.1721956
Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J. App. Phys. 33(4):1482–1498. https://doi.org/10.1063/1.1728759
Biot MA, Willis DG (1957) The Elastic Coefficients of the Theory of Consolidation. In: The elastic coefficients of the theory of consolidation
Budhu M, Adiyaman IB (2010) Mechanics of land subsidence due to groundwater pumping. Int. J. Numer. Anal. Methods Geomech. 34(14):1459–1478. https://doi.org/10.1002/nag.863
Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24(5):755–769. https://doi.org/10.1029/WR024i005p00755
Cheng Y, Zhang LL, Li JH, Zhang LM, Wang JH, Wang DY (2017) Consolidation in spatially random unsaturated soils based on coupled flow-deformation simulation. Int. J. Numer. Anal. Methods Geomech. 41(5):682–706. https://doi.org/10.1002/nag.2572
Chiou Y, Chi S (1994) Boundary element analysis of Biot consolidation in layered elastic soils. Int. J. Numer. Anal. Methods Geomech. 18(6):377–396. https://doi.org/10.1002/nag.1610180603
Ching J, Phoon KK, Pan YK (2017) On characterizing spatially variable soil Young’s modulus using spatial average. Struct. Saf. 66:106–117. https://doi.org/10.1016/j.strusafe.2017.03.001
COMSOL, A. B. (2018). COMSOL multiphysics reference manual. COMSOL AB.
Corapcioglu MY, Bear J (1984) Land Subsidence — B. A Regional Mathematical Model for Land Subsidence due to Pumping. In: Land subsidence - B. A regional mathematical model for land subsidence due to pumping, Springer, Dordrecht
Ferronato M, Gambolati G, Teatini P, Baù D (2006) Stochastic poromechanical modeling of anthropogenic land subsidence. Int. J. Solids Struct. 43(11-12):3324–3336. https://doi.org/10.1016/j.ijsolstr.2005.06.090
Ferronato M, Gazzola L, Castelletto N, Teatini P, Zhu L. (2017). A coupled mixed finite element Biot model for land subsidence prediction in the Beijing area. In Poromechanics VI (pp. 182-189).
Firouzianbandpey S, Ibsen LB, Griffiths DV, Vahdatirad MJ, Andersen LV, Sørensen JD (2015) Effect of spatial correlation length on the interpretation of normalized CPT data using a kriging approach. J. Geotech. Geoenviron. Eng. 141(12):04015052. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001358
Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (Eds.). (1999). Land subsidence in the United States (Vol. 1182). US Geological Survey.
Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Corporation
Gudala M, Govindarajan SK (2020) Numerical modeling of coupled fluid flow and geomechanical stresses in a petroleum reservoir. J. Energy Resour. Technol. 142(6):063006. https://doi.org/10.1115/1.4045832
Hanson RT (1989) Aquifer-system compaction. Tucson Basin and Avra Valley, Arizona
Holzbecher, E. (2013). Poroelasticity benchmarking for FEM on analytical solutions. In Excerpt from the Proceedings of the COMSOL Conference Rotterdam (pp. 1-7).
Houmadi Y, Ahmed A, Soubra AH (2012) Probabilistic analysis of a one-dimensional soil consolidation problem. Georisk 6(1):36–49. https://doi.org/10.1080/17499518.2011.590090
Houmadi Y, Benmoussa MYC, Cherifi WNEH, Rahal DD (2020) Probabilistic analysis of consolidation problems using subset simulation. Comput. Geotech. 124:103612. https://doi.org/10.1016/j.compgeo.2020.103612
Huang J, Griffiths DV, Fenton GA (2010) Probabilistic analysis of coupled soil consolidation. J. Geotech. Geoenviron. Eng. 136(3):417–430. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000238
Leake S, Hsieh PA (1995) Simulation of deformation of sediments from decline of ground-water levels in an aquifer underlain by a bedrock step. In US Geological Survey Subsidence Interest Group Conference, Proceedings of the Technical Meeting, Las Vegas, Nevada, February 14-16:1995 (Vol. 97, p. 10)
Peng XY, Zhang LL, Jeng DS, Chen LH, Liao CC, Yang HQ (2017) Effects of cross-correlated multiple spatially random soil properties on wave-induced oscillatory seabed response. Appl. Ocean Res. 62:57–69. https://doi.org/10.1016/j.apor.2016.11.004
Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can. Geotech. J. 36(4):612–624. https://doi.org/10.1139/t99-038
Rétháti L (2012) Probabilistic solutions in geotechnics. Elsevier
Savvides AA, Papadrakakis M (2020) A probabilistic assessment for porous consolidation of clays. SN App. Sci. 2(12):2115. https://doi.org/10.1007/s42452-020-03894-6
Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 48(9):1378–1392. https://doi.org/10.1139/t11-049
Shen Z, Jin D, Pan Q, Yang H, Chian SC (2021a) Effect of soil spatial variability on failure mechanisms and undrained capacities of strip foundations under uniaxial loading. Comput. Geotech. 139:104387. https://doi.org/10.1016/j.compgeo.2021.104387
Shen Z, Jin D, Pan Q, Yang H, Chian SC (2021b) Reply to the discussion on “Effect of soil spatial variability on failure mechanisms and undrained capacities of strip foundations under uniaxial loading” by Zhe Luo. Comput. Geotech. 142:104539. https://doi.org/10.1016/j.compgeo.2021.104539
Sloan SW, Abbo AJ (1999) Biot consolidation analysis with automatic time stepping and error control part 1: theory and implementation. Int. J. Numer. Anal. Methods Geomech. 23(6):467–492. https://doi.org/10.1002/(SICI)1096-9853(199905)23:6<467::AID-NAG949>3.0.CO;2-R
Srivastava A, Babu GS, Haldar S (2010) Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis. Eng. Geol. 110(3-4):93–101. https://doi.org/10.1016/j.enggeo.2009.11.006
Sun YX, Zhang LL, Yang HQ, Zhang J, Cao ZJ, Cui Q, Yan JY (2020) Characterization of spatial variability with observed responses: application of displacement back estimation. J. Zhejiang Univ. Sci. 21(6):478–495. https://doi.org/10.1631/jzus.A1900558
Tabarroki M, Ching J (2019) Discretization error in the random finite element method for spatially variable undrained shear strength. Comput. Geotech. 105:183–194. https://doi.org/10.1016/j.compgeo.2018.10.001
Western AW, Blöschl G, Grayson RB (1998) Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment. J. Hydro. 205(1-2):20–37. https://doi.org/10.1016/S0022-1694(97)00142-X
Western AW, Zhou SL, Grayson RB, McMahon TA, Blöschl G, Wilson DJ (2004) Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydro. 286(1-4):113–134. https://doi.org/10.1016/j.jhydrol.2003.09.014
Xu J, Zhang L, Li J, Cao Z, Yang H, Chen X (2021) Probabilistic estimation of variogram parameters of geotechnical properties with a trend based on Bayesian inference using Markov chain Monte Carlo simulation. Georisk 15(2):83–97. https://doi.org/10.1080/17499518.2020.1757720
Xu J, Zhang L, Wang Y, Wang C, Zheng J, Yu Y (2020) Probabilistic estimation of cross-variogram based on Bayesian inference. Eng. Geol. 277:105813. https://doi.org/10.1016/j.enggeo.2020.105813
Xu YS, Shen SL, Cai ZY, Zhou GY (2008) The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Nat. Hazards 45(1):123–135. https://doi.org/10.1007/s11069-007-9168-4
Xue YQ, Zhang Y, Ye SJ, Wu JC, Li QF (2005) Land subsidence in China. Environ. Geol. 48(6):713–720. https://doi.org/10.1007/s00254-005-0010-6
Yang HQ, Zhang LL, Xue J, Zhang J, Li X (2019) Unsaturated soil slope characterization with Karhunen–Loève and polynomial chaos via Bayesian approach. Eng. Comput. 35(1):337–350. https://doi.org/10.1007/s00366-018-0610-x
Yang HQ, Chen X, Zhang L, Zhang J, Wei X, Tang C (2020) Conditions of hydraulic heterogeneity under which Bayesian estimation is more reliable. Water 12(1):160. https://doi.org/10.3390/w12010160
Yang HQ, Zhang L, Li DQ (2018) Efficient method for probabilistic estimation of spatially varied hydraulic properties in a soil slope based on field responses: a Bayesian approach. Comput. Geotech. 102:262–272. https://doi.org/10.1016/j.compgeo.2017.11.012
Zhang J, Cui X, Huang D, Jin Q, Lou J, Tang W (2016a) Numerical simulation of consolidation settlement of pervious concrete pile composite foundation under road embankment. Int. J. Geomech. 16(1):B4015006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000542
Zhang LL, Li JH, Li X, Zhang J, Zhu H (2016b) Rainfall-induced soil slope failure: stability analysis and probabilistic assessment. CRC Press
Zhang LL, Wu F, Zheng Y, Chen L, Zhang J, Li X (2018) Probabilistic calibration of a coupled hydro-mechanical slope stability model with integration of multiple observations. Georisk 12(3):169–182. https://doi.org/10.1080/17499518.2018.1440317