Probabilistic Wind Gust Forecasting during the 2022 Beijing Winter Olympics
Tóm tắt
The probabilistic forecast of wind gusts poses a significant challenge during the post-processing of numerical model outputs. Comparative analysis of probabilistic forecasting methods plays a crucial role in enhancing forecast accuracy. Within the context of meteorological services for alpine skiing at the 2022 Beijing Winter Olympics, The ECM-WF ensemble products were used to evaluate six post-processing methods. These methods include ensemble model output statistics (EMOS), backpropagation neural networks (BP), particle swarm optimization algorithms with back-propagation neural networks (PSO), truncated normal distributions, truncated logarithmic distributions, and generalized extreme value (GEV) distributions. The performance of these methods in predicting gust probabilities at five observation points along a ski track was compared. All six methods exhibited a substantial reduction in forecast errors compared to the original ECMWF products; however, the ability to correct the model forecast results varied significantly across different wind speed ranges. Specifically, the EMOS, truncated normal distribution, truncated logarithmic distribution, and GEV distribution demonstrated advantages in low wind-speed ranges, whereas the BP and PSO methods exhibit lower forecast errors for high wind-speed events. Furthermore, this study affirms the rationality of utilizing the statistical characteristics derived from ensemble forecasts as probabilistic forecast factors. The application of probability integral transform (PIT) and quantile–quantile (QQ) plots demonstrates that gust variations at the majority of observation sites conform to the GEV distribution, thereby indicating the potential for further enhanced forecast accuracy. The results also underscore the significant utility of the PSO hybrid model, which amalgamates particle swarm optimization with a BP neural network, in the probabilistic forecasting of strong winds within the field of meteorology.
Tài liệu tham khảo
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, doi: https://doi.org/10.1038/nature14956.
Bremnes, J. B., 2004: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mon. Wea. Rev., 132, 338–347, doi: https://doi.org/10.1175/1520-0493(2004)132<0338:PFO-PIT>2.0.CO;2.
Bremnes, J. B., 2020: Ensemble postprocessing using quantile function regression based on neural networks and Bernstein polynomials. Mon. Wea. Rev., 148, 403–414, doi: https://doi.org/10.1175/MWR-D-19-0227.1.
Collins, M., and M. R. Allen, 2002: Assessing the relative roles of initial and boundary conditions in interannual to decadal climate predictability. J. Climate, 15, 3104–3109, doi: https://doi.org/10.1175/1520-0442(2002)015<3104:ATRROI>2.0.CO;2.
Gneiting, T., A. E. Raftery, A. H. WestveldIII, et al., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098–1118, doi: https://doi.org/10.1175/MWR2904.1.
Haupt, S. E., W. Chapman, S. V. Adams, et al., 2021: Towards implementing artificial intelligence post-processing in weather and climate: Proposed actions from the Oxford 2019 workshop. Philos. Trans. A Math. Phys. Eng. Sci., 379, 20200091, doi: https://doi.org/10.1098/rsta.2020.0091.
Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505–513, doi: https://doi.org/10.3402/tellusa.v34i6.10836.
Magnusson, L., and E. Källén, 2013: Factors influencing skill improvements in the ECMWF forecasting system. Mon. Wea. Rev., 141, 3142–3153, doi: https://doi.org/10.1175/MWR-D-12-00318.1.
Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35, 617–626, doi: https://doi.org/10.1175/1520-0450(1996)035<0617:ANNFTP>2.0.CO;2.
Marzban, C., and G. Stumpf, 1998: A neural network for damaging wind prediction. Wea. Forecasting, 13, 151–163, doi: https://doi.org/10.1175/1520-0434(1998)013<0151:ANNFDW>2.0.CO;2.
McCann, D. W., 1992: A neural network short-term forecast of significant thunderstorms. Wea. Forecasting, 7, 525–534, doi: https://doi.org/10.1175/1520-0434(1992)007<0525:ANNSTF>2.0.CO;2.
Pantillon, F., S. Lerch, P. Knippertz, et al., 2018: Forecasting wind gusts in winter storms using a calibrated convection-permitting ensemble. Quart. J. Roy. Meteor. Soc., 144, 1864–1881, doi: https://doi.org/10.1002/qj.3380.
Raftery, A. E., T. Gneiting, F. Balabdaoui, et al., 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–1174, doi: https://doi.org/10.1175/MWR2906.1.
Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 3885–3900, doi: https://doi.org/10.1175/MWR-D-18-0187.1.
Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601–608, doi: https://doi.org/10.1175/2008WAF2222159.1.
Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 1086–1096, doi: https://doi.org/10.1002/qj.2183.
Scheuerer, M., and D. Möller, 2015: Probabilistic wind speed forecasting on a grid based on ensemble model output statistics. Ann. Appl. Stat., 9, 1328–1349, doi: https://doi.org/10.1214/15-AOAS843.
Scheuerer, M., M. B. Switanek, R. P. Worsnop, et al., 2020: Using artificial neural networks for generating probabilistic sub-seasonal precipitation forecasts over California. Mon. Wea. Rev., 148, 3489–3506, doi: https://doi.org/10.1175/MWR-D-20-0096.1.
Schulz, B., and S. Lerch, 2022: Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison. Mon. Wea. Rev., 150, 235–257, doi: https://doi.org/10.1175/MWR-D-21-0150.1.
Sheikhan, M., and N. Mohammadi, 2013: Time series prediction using PSO-optimized neural network and hybrid feature selection algorithm for IEEE load data. Neural Comput. Appl., 23, 1185–1194, doi: https://doi.org/10.1007/s00521-012-0980-8.
Taillardat, M., O. Mestre, M. Zamo, et al., 2016: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics. Mon. Wea. Rev., 144, 2375–2393, doi: https://doi.org/10.1175/MWR-D-15-0260.1.
Thorarinsdottir, T. L., and T. Gneiting, 2010: Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression. J. Roy. Stat. Soc. A Stat. Soc., 173, 371–388, doi: https://doi.org/10.1111/j.1467-985X.2009.00616.x.
Vannitsem, S., 2017: Predictability of large-scale atmospheric motions: Lyapunov exponents and error dynamics. Chaos, 27, 032101, doi: https://doi.org/10.1063/1.4979042.
Vannitsem, S., J. B. Bremnes, J. Demaeyer, et al., 2021: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Amer. Meteor. Soc., 102, E681–E699, doi: https://doi.org/10.1175/BAMS-D-19-0308.1.
Veldkamp, S., K. Whan, S. Dirksen, et al., 2021 Statistical postprocessing of wind speed forecasts using convolutional neural networks. Mon. Wea. Rev., 149, 1141–1152, doi: https://doi.org/10.1175/MWR-D-20-0219.1.
Velthoen, J., J. J. Cai, G. Jongbloed, et al., 2019: Improving precipitation forecasts using extreme quantile regression. Extremes, 22, 599–622, doi: https://doi.org/10.1007/s10687-019-00355-1.
Wahl, S., 2015: Uncertainty in mesoscale numerical weather prediction: Probabilistic forecasting of precipitation. Ph.D. dissertation, University of Bonn, Bonn, 120 pp.
Whan, K., and M. Schmeits, 2018: Comparing area probability forecasts of (extreme) local precipitation using parametric and machine learning statistical postprocessing methods. Mon. Wea. Rev., 146, 3651–3673, doi: https://doi.org/10.1175/MWR-D-17-0290.1.
Xiong, M. Q., 2017: Calibrating daily 2 m maximum and minimum air temperature forecasts in the ensemble prediction system. Acta Meteor. Sinica, 75, 211–222, doi: https://doi.org/10.11676/qxxb2017.023. (in Chinese)
Xiong, M. Q., K. Dai, and J. Tan, 2020: Analyzing and calibrating extended-range forecast of China’s daily maximum temperature in spring. J. Trop. Meteor., 36, 795–804, doi: https://doi.org/10.16032/j.issn.1004-4965.2020.040. (in Chinese)
Xiong, M. Q., W. Feng, and C. H. Liu, 2022: Analysis of wind prediction skills for the Winter Olympics playing area in Yanqing Beijing. Acta Meteor. Sinica, 80, 289–303, doi https://doi.org/10.11676/qxxb2022.018. (in Chinese)