Ước lượng xác suất của ngưỡng đối với hiện tượng phú dưỡng

Springer Science and Business Media LLC - Tập 11 - Trang 601-613 - 2008
Stephen R. Carpenter1, Richard C. Lathrop1,2
1Center for Limnology, University of Wisconsin-Madison, USA
2Wisconsin Department of Natural Resources, Madison, USA

Tóm tắt

Sự chuyển đổi chế độ, hay những thay đổi lớn trong hệ sinh thái, thường liên quan đến các ngưỡng trong các yếu tố như khí hậu, thay đổi đất đai, dòng chảy dinh dưỡng, hoặc các yếu tố khác. Một ví dụ thường được nghiên cứu là hiện tượng phú dưỡng, đây là một vấn đề môi trường nghiêm trọng của các hồ và đập nước liên quan đến sự gia tăng phốt pho (P) vượt ngưỡng. Chúng tôi đã ước lượng các phân phối xác suất của các ngưỡng đối với hiện tượng phú dưỡng của hồ Mendota, Wisconsin, Hoa Kỳ bằng cách sử dụng 30 năm ngân sách P hàng năm. Mặc dù các ngưỡng có khả năng ảnh hưởng tới hiện tượng phú dưỡng của hồ (xác suất 96,6%), nhưng các phân phối xác suất của các ngưỡng lại trải dài trên một khoảng rộng của các tỷ lệ tải P. Các khuyến nghị quản lý nhất quán với các mô hình đơn giản hơn khuyến nghị mục tiêu tải P gần hoặc thấp hơn các tải P thấp nhất được quan sát trong 30 năm qua. Nếu tải trọng tăng, có nguy cơ đáng kể về việc vượt qua một ngưỡng gây ra hiện tượng phú dưỡng bền vững với nồng độ P cao trong hồ và chất lượng nước kém. Ngược lại, nếu tải trọng giảm, sẽ có khả năng vượt qua ngưỡng giảm thiểu, dẫn đến giảm mạnh nồng độ P và cải thiện chất lượng nước. Việc xem xét những rủi ro này sẽ gia tăng ước tính các lợi ích kinh tế ròng của việc tải P thấp hơn. Phân tích của chúng tôi minh họa một quy trình ước lượng các phân phối xác suất cho các ngưỡng của sự chuyển đổi chế độ hệ sinh thái. Mặc dù các phân phối xác suất ngưỡng có thể rộng với đuôi dày, chúng vẫn cung cấp thông tin quan trọng về các hậu quả tiềm tàng của các lựa chọn chính sách thay thế.

Từ khóa

#phú dưỡng #ngưỡng #xác suất #chất lượng nước #quản lý môi trường

Tài liệu tham khảo

Ahlgren G 1978. Response of phytoplankton and primary production to reduced nutrient loading in Lake Norvikken. Verhandlungen Internationale Vereinigung Limnologie 20:840–45 Amirbahman A, Pearce AR, Bouchard RJ, Norton SA, Kahl JS 2003. Relationship between hypolimnetic phosphorus and iron release from eleven lakes in Maine, USA. Biogeochemistry 65:369–85 Bayley SE, Creed IF, Sass GZ, Wong AS. 2007. Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: alternative "unstable" states? Limnol Oceanogr 52:2002–12. Bennett EM, Reed-Andersen T, Houser JN, Gabriel JR, Carpenter SR 1999. A phosphorus budget for the Lake Mendota watershed. Ecosystems 2:69–75 Borsuk ME, Stow CA, Reckhow KG 2004 A Bayesian network of eutrophication models for synthesis, prediction and uncertainty analysis. Ecol Model 173:219–39 Buhrer H, Ambuhl H 2001. Lake Lucerne, Switzerland, a long term study of 1961–1992. Aquat Sci 63:432–56 Caraco N, Cole JJ, Likens GE 1991. A cross-system study of phosphorus release from lake sediments. In J Cole, G Lovett, S Findlay (eds), Comparative analysis of ecosystems. Springer Verlag, NY. Pp. 241–58 Carpenter SR 2003. Regime shifts in Lake ecosystems: pattern and variation. Volume 15 in the excellence in ecology series, Ecology Institute, Oldendorf/Luhe, Germany Carpenter SR. 2005. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci 102:10002–5 Carpenter SR, Brock WA. 2006. Rising variance: a leading indicator of ecological transition. Ecol Lett 9:311–8 Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE 2001. Trophic cascades, nutrients and lake productivity: whole-lake experiments. Ecol Monogr 71:163–86 Carpenter SR, Lathrop RC, Nowak P, Bennett EM, Reed T, Soranno PA 2006. The ongoing experiment: restoration of Lake Mendota and its watershed. In Magnuson JJ, Kratz TK, Benson BJ, (eds.), Long-term dynamics of Lakes in the landscape. Oxford University Press, London, England. Pp. 236–56 Carpenter SR, Ludwig D, Brock WA. 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–71 Clark JS 2007. Models for ecological data: an introduction. Princeton University Press, Princeton, N.J Cooke GD, Welch EB, Peterson S, Nichols SA 2005. Restoration and management of lakes and reservoirs, 3rd edition. CRC Press, Boca Raton, Florida Devlin M, Planting S, Best M 2007. Setting nutrient thresholds to support an ecological assessment based on nutrient enrichment, potential primary production and undesirable disturbance. Mar Pollut Bull 55:65–73 Gachter R, Muller B 2003. Why the phosphorus retention of lakes does not necessarily depend on oxygen supply to their sediment surface. Limnol Oceanogr 48:929–33 Gelman A, Carlin JB, Stern HS, Rubin DB 1995. Bayesian data analysis. Chapman and Hall, London Genkai-Kato M, Carpenter SR 2005. Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature and macrophytes. Ecology 86:210–9 Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH, Levinson BM, Palmer MA, Paerl HW, Peterson GD, Poff NL, Rejeski DW, Reynolds JF, Turner MG, Weathers KC, Wiens JA 2006. Ecological thresholds: the key to successful environmental management or an important concept with no practical application. Ecosystems 9:1–13 Hansson LA, Annadotter H, Bergman E, Hamrin SF, Jeppesen E, Kairesalo T, Luokkanen E, Nilsson P-Å, Søndergaard M, Strand J. 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1:558–74 Hargeby A, Blindow I, Andersson G 2007. Long-term patterns of shifts between clear and turbid states in Lake Kranesjön and Lake Tåkern. Ecosystems 10:28–35 Hobbs W, Irvine K, Donohue I 2005. Using sediments to assess the resistance of a calcareous lake to diffuse nutrient loading. Archiv fur Hydrobiologie 164:109–25 Ibelings BW, Portielje R, Lammens EHRR, Noordhuis R, van den Berg MS, Joosse W, Meijer ML 2007. Resilience of alternative stable states during the recovery of shallow lakes from eturophication: Lake Veluwe as a case study. Ecosystems 10:4–16 Janse J (1997) A model of nutrient dynamics in shallow lakes in relation to multiple stable states. Hydrobiologia 342/343:1–8 Jensen JP, Pedersen AR, Jeppesen E, Søndergaard M 2006. An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnol Oceanogr 51:791–800 Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, Jensen JP, Lauridsen TL, Mazzeo N, Branco CWC. 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia 581:269–85 Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil M, Foy B, Gerdaux D, Hampton SE, Hilt S, Kangur K, Kohler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Noges P, Persson G, Phillips G, Portielje P, Romo S, Schelske CL, Straile D, Tatrai I, Willen E, Winder M 2005a. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–71 Jeppesen E, Søndergaard M, Jensen JP, Lauridsen TL, Liboriussen L, Hansen RB, Amsinck SL, Johansson LS, Landkildehus F 2005b. Response of northern temperate shallow lakes to reduced nutrient loading, with special emphasis on Danish Lakes. Verh Internat Verein Limnol 29:115–22 Jeppesen E, Søndergaard M, Søndergaard M, Christofferson K (eds.), 1998. The structuring role of submerged macrophytes in Lakes. Springer-Verlag, Berlin Larsen DP, Sickel JV, Malueg KW, Smith DP 1979. The effect of wastewater phosphorus removal on Shagawa Lake, Minnesota: phosphorus supplies, lake phosphorus, and chlorophyll a. Water Res 13:1259–72 Larsen DP, Schults DW, Malueg KW 1981. Summer internal phosphorus supplies in Shagawa Lake, Minnesota. Limnol Oceanogr 26:740–53 Lathrop RC 2007. Perspectives on the eutrophication of the Yahara lakes. Lake Reserv Manag 23:345–65 Lathrop RC, Carpenter SR, Robertson DM 1999. Summer water clarity responses to phosphorus, Daphnia grazing, and internal mixing in Lake Mendota. Limnol Oceanogr 44: 137–46 Lathrop RC, Carpenter SR, Rudstam LG 1996. Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory. Can J Fish Aquat Sci 53:2250–61 Lathrop RC, Carpenter SR, Stow CA, Soranno PA, Panuska JC 1998. Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. Can J Fish Aquat Sci 55:1169–78 Levine SN, Schindler DW 1989. Phosphorus, nitrogen and carbon dynamics of experimental Lake 303 during recovery from eutrophication. Can J Fish Aquat Sci 46:2–10 Ludwig D, Carpenter SR, Brock WA 2003. Optimal phosphorus loading for a potentially eutrophic lake. Ecol Appl 13: 1135–52 MA (Millennium Ecosystem Assessment). 2005. Ecosystems and human well-being: summary for decision makers. Island Press, Washington D.C Mastrandrea MD, Schneider SH 2004. Probabilistic integrated assessment of “dangerous” climate change. Science 304:571–4 Moosman L, Gachter R, Muller B, Wuest A 2006. Is phosphorus retention in autochthonous lake sediments controlled by oxygen or phosphorus? Limnol Oceanogr 51:763–71 NRC (National Research Council). 2001. Assessing the TMDL approach to water quality management. National Academy Press Nürnberg G. 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol Oceanogr 29:111–24 Nürnberg G. 1998. Prediction of annual and seasonal phosphorus concentrations in stratified and polymictic lakes. Limnol Oceanogr 43:1544–52 Peters DPC, Bestelmeyer BT, Turner MG 2007. Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics. Ecosystems 10:790–6 Peterson GD, Carpenter SR, Brock WA 2003. Uncertainty and management of multi-state ecosystems: an apparently rational route to collapse. Ecology 84:1403–11 Reed-Andersen T, Carpenter SR, Lathrop RC 2000. Phosphorus flow in a watershed-lake ecosystem. Ecosystems 3:561–73 Richardson CJ, Qian SS 1999. Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function. Environ Sci Technol 33:1545–51 Sas H 1989. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Academia Verlag Richarz, Sant Augustin, Germany Schauser I, Hupfer M, Bruggeman R 2004. SPIEL – a model for phosphorus diagenesis and its application to lake restoration. Ecol Model 176:389–407 Scheffer M 1998. The ecology of shallow lakes. Chapman and Hall, London Scheffer M, Carpenter SR, Foley JA, Folke C, Walker B 2001. Catastrophic shifts in ecosystems. Nature 413:591–6 Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–9 Scheffer M, Jeppesen E 2007. Regime shifts in shallow lakes. Ecosystems 10:1–3 Schindler DW 2006. Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–63 Schneider SH, Kuntz-Duriseti K 2002. Uncertainty and climate change policy. In Schneider SH, Rosenkranz A, Niles JO (eds), Climate change policy: a survey. Island Press, Washington D.C. pp. 53–87 Sharpley AN, Kleinman PJA, McDowell RW, Gitau M, Bryant RB 2002. Modeling phosphorus transport in agricultural watersheds: processes and possibilities. J Soil Water Conserv 57:425–39 Sharpley AN, Weld JL, Beegle DB, Kleinman PJA, Gburek WL, Moore PA, Mullins G. 2003. Development of phosphorus indices for nutrient management planning strategies in the U.S. J Soil Water Conserv 58:137–52 Shearer JA, Fee EJ, DeBruyn ER, DeClercq DR 1987. Phytoplankton productivity changes in a small double-basin lake in response to termination of experimental fertilization. Can J Fish Aquat Sci 44(Suppl. 1):47–54 Smith VH, Joye SB, Howarth RW 2006. Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51:351–5 Soranno PA, Carpenter SR, Lathrop RC 1997. Internal phosphorus loading in Lake Mendota: response to external loads and weather. Can J Fish Aquat Sci 54:1883–93 Søndergaard M, Jensen JP, Jeppesen E 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506:135–45 Søndergaard M, Jensen JP, Jeppesen E 2005. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshw Biol 50:1605–15 Søndergaard M, Jeppesen E, Lauridsen TL, Skov C, van Nes EH, Roijackers R, Lammens E, Portielje R 2007. Lake restoration: successes, failures and long-term effects. J Appl Ecol 44:1095–105 Stauffer RE, Lee GF 1973. The role of thermocline migration in regulating algal blooms. In Middelbrooks EJ (ed), Modeling the eutrophication process. Ann Arbor Science Publishers, Ann Arbor, Michigan Stow CA, Qian SS, Craig JK 2005. Declining threshold for hypoxia in the Gulf of Mexico. Environ Sci Technol 39:716–23 van Nes E, Scheffer M 2007. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am Nat 169:738–47 Vollenweider RA 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33:53–83 Walker B, Meyers JA. 2004. Thresholds in ecological and social-ecological systems: a developing database. Ecol Soc 9(2):3, URL: http://www.ecologyandsociety.org/vol9/iss2/art3 Weld JL, Parsons RL, Beegle DB, Sharpley AN, Gburek WJ, Clouser WR. 2002. Evaluation of phosphorus-based nutrient management strategies in Pennsylvania. J Soil Water Conserv 57:448–54