Private Verification in Multi-stakeholder Environment and its Application to Stable Matching
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdollahpouri H, Adomavicius G, Burke R, Guy I, Jannach D, Kamishima T, Krasnodebski J, Pizzato L. Multistakeholder recommendation: survey and research directions. User Model User Adapt Interact. 2020;30(1):127–58. https://doi.org/10.1007/s11257-019-09256-1.
Golle, P. A private stable matching algorithm. In: Proceedings of the 10th international conference on financial cryptography and data security. FC’06, pp. 65–80. Springer, Berlin, Heidelberg 2006. https://doi.org/10.1007/11889663_5.
Nakamura T, Okada H, Fukushima K, Isohara T. Achieving private verification in multi-stakeholder environment and application to stable matching. In: ICEIS (1). 2023. pp. 768–775.
Acar A, Aksu H, Uluagac AS, Conti M. A survey on homomorphic encryption schemes: theory and implementation. ACM Comput Surv (Csur). 2018;51(4):1–35.
Gentry C. A fully homomorphic encryption scheme. Stanford: Stanford University; 2009.
Costache A, Nürnberger L, Player R. Optimisations and tradeoffs for HElib. In: Cryptographer’s track at the RSA conference, Springer; 2023. pp. 29–53.
Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans Comput Theory (TOCT). 2014;6(3):1–36.
Brakerski Z. Fully homomorphic encryption without modulus switching from classical GapSVP. In: Annual Cryptology Conference. Springer; 2012. pp. 868–886.
Chillotti I, Gama N, Georgieva M, Izabachene M. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In: Advances in cryptology–ASIACRYPT 2016: 22nd international conference on the theory and application of cryptology and information security, Hanoi, Vietnam, December 4–8, 2016, Proceedings, Part I 22. Springer; 2016. pp. 3–33.
Chillotti I, Gama N, Georgieva M, Izabachène M. Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: international conference on the theory and application of cryptology and information security. Springer; 2017. pp. 377–408.
Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for arithmetic of approximate numbers. In: Advances in cryptology–ASIACRYPT 2017: 23rd international conference on the theory and applications of cryptology and information security, Hong Kong, China, December 3–7, 2017, Proceedings, Part I, vol. 23. Springer; 2017. pp. 409–437.
Arora S, Safra S. Probabilistic checking of proofs: a new characterization of np. J ACM (JACM). 1998;45(1):70–122.
Setty S, McPherson R, Blumberg A, Walfish M. Making argument systems for outsourced computation practical (sometimes). In: Network and distributed system security symposium (NDSS) 2012.
Gennaro R, Gentry C, Parno B. Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Advances in cryptology–CRYPTO 2010: 30th annual cryptology conference, Santa Barbara, CA, USA, August 15–19, 2010. Proceedings 30. Springer; 2010. pp. 465–482.
Yao AC-C. How to generate and exchange secrets. In: 27th Annual symposium on foundations of computer science (SFCS 1986). IEEE; 1986; pp. 162–167.
Parno B, Howell J, Gentry C, Raykova M. Pinocchio: nearly practical verifiable computation. In: 2013 IEEE symposium on security and privacy. IEEE; 2013. pp. 238–252.
Braun B, Feldman AJ, Ren Z, Setty S, Blumberg AJ, Walfish M. Verifying computations with state. In: Proceedings of the twenty-fourth ACM symposium on operating systems principles. 2013. pp. 341–357.
Costello C, Fournet C, Howell J, Kohlweiss M, Kreuter B, Naehrig M, Parno B, Zahur S. Geppetto: versatile verifiable computation. In: 2015 IEEE symposium on security and privacy. IEEE; 2015. pp. 253–270.
Gusfield D, Irving RW. The stable marriage problem: structure and algorithms. Cambridge: The MIT Press; 1989.
Gale D, Sotomayor M. Some remarks on the stable matching problem. Discret Appl Math. 1985;11(3):223–32. https://doi.org/10.1016/0166-218X(85)90074-5.
Irving RW. Stable marriage and indifference. Discret Appl Math. 1994;48(3):261–72. https://doi.org/10.1016/0166-218X(92)00179-P.
Irving RW, Leather P, Gusfield D. An efficient algorithm for the “optimal’’ stable marriage. J ACM (JACM). 1987;34(3):532–43. https://doi.org/10.1145/28869.28871.
Franklin M, Gondree M, Mohassel P. Improved efficiency for private stable matching. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 4377 LNCS . 2007. pp. 163–177. https://doi.org/10.1007/11967668_11.
Teruya T, Sakuma J. Round-efficient private stable matching from additive homomorphic encryption. In: Desmedt Y, editor. Security information. Cham: Springer; 2015. p. 69–86. https://doi.org/10.1007/978-3-319-27659-5_5.
Doerner J, Evans D, Shelat A. Secure stable matching at scale. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. CCS ’16, pp. 1602–1613. Association for Computing Machinery, New York, NY, USA 2016. https://doi.org/10.1145/2976749.2978373.
Riazi MS, Songhori EM, Sadeghi A-R, Schneider T, Koushanfar F. Toward practical secure stable matching. Proc Privacy Enhanc Technol. 2017;1:62–78.
Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd annual symposium on foundations of computer science. 2011. pp. 97–106. https://doi.org/10.1109/FOCS.2011.12.