Privacy-preserving SVM classification

Knowledge and Information Systems - Tập 14 Số 2 - Trang 161-178 - 2008
Jaideep Vaidya1, Hwanjo Yu2, Xiaoqian Jiang2
1Management Science and Information Systems Department, Rutgers University, Newark, USA
2Department of Computer Science, University of Iowa, Iowa City, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal D, Aggarwal CC (2001) On the design and quantification of privacy preserving data mining algorithms. In: Proceedings of the twentieth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. ACM, Santa Barbara, CA, pp 247–255. [Online]. Available: http://doi.acm.org/10.1145/375551.375602

Aggarwal CC, Yu PS (2004) A condensation approach to privacy preserving data mining. In: Lecture notes in computer science, vol 2992, pp 183–199

Agrawal R, Srikant R (2000) Privacy-preserving data mining. In: Proceedings of the 2000 ACM SIGMOD conference on management of data, ACM, Dallas, TX, pp 439–450. [Online]. Available: http://doi.acm.org/10.1145/342009.335438

Benaloh JC (1986) Secret sharing homomorphisms: Keeping shares of a secret secret. In: Odlyzko A (ed) Advances in cryptography—CRYPTO86: proceedings, vol 263, Lecture notes in computer science, 1986, Springer-Verlag, Berlin, pp 251–260. [Online]. Available: http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=263&spage=251

Blum M, Goldwasser S (1984) An efficient probabilistic public-key encryption that hides all partial information. In: Blakely R (ed) Advances in cryptology—Crypto 84 proceedings. Springer-Verlag, Berlin

Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

Christianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, New York

Directive 95/46/EC of the European parliament and of the council of 24 october 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data. Off J Eur Communities I(281):31–50

Du W, Atallah MJ (2001) Privacy-preserving statistical analysis. In: Proceedings of the 17th annual computer security applications conference, New Orleans, LA, [Online]. Available: http://www.cerias.purdue.edu/homes/duw/research/paper/acsac2001.ps

Du W, Zhan Z (2002) Building decision tree classifier on private data. In: Clifton C, Estivill-Castro V (eds) IEEE international conference on data mining workshop on privacy, security, and data mining, vol~14. Australian Computer Society, Maebashi City, Japan, pp 1–8. [Online]. Available: http://crpit.com/Vol14.html

Evfimievski A, Srikant R, Agrawal R, Gehrke J (2002) Privacy preserving mining of association rules. In: The eighth ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton, Alberta, Canada, pp 217–228. [Online]. Available: http://doi.acm.org/10.1145/775047.775080

Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Proceedings of the ACM SIGKDD international conference knowledge discovery and data mining (KDD’01), pp 77–86

Goethals B, Laur S, Lipmaa H, Mielikäinen T (2004) On secure scalar product computation for privacy-preserving data mining. In: Park C, Chee S (eds) The 7th annual international conference in information security and cryptology (ICISC 2004), vol 3506, pp 104–120

Goldreich O, Micali S, Wigderson A (1987) How to play any mental game—a completeness theorem for protocols with honest majority. In: 19th ACM Symposium on the Theory of Computing, pp 218–229. [Online]. Available: http://doi.acm.org/10.1145/28395.28420

Huang Z, Du W, Chen B (2005) Deriving private information from randomized data. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data, Baltimore, MD

Ioannidis I, Grama A, Atallah M (2002) A secure protocol for computing dot-products in clustered and distributed environments. In: The 2002 international conference on parallel processing, Vancouver, British Columbia, Canada

Jagannathan G, Wright RN (2005) Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: Proceedings of the 2005 ACM SIGKDD international conference on knowledge discovery and data mining, Chicago, IL, pp 593–599

Kantarcıoglu M, Clifton C (2004) Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Trans Knowl Data Eng 16(9):1026–1037. [Online]. Available: http://csdl.computer.org/comp/trans/tk/2004/09/k1026abs.htm

Kargupta H, Datta S, Wang Q, Sivakumar K (2003) On the privacy preserving properties of random data perturbation techniques. In: Proceedings of the third IEEE international conference on data mining (ICDM’03), Melbourne, FL

Kargupta H, Datta S, Wang Q, Sivakumar K (2005) Random-data perturbation techniques and privacy-preserving data mining. Knowl Inf Syst 7(4):387–414. [Online]. Available: http://www.springerlink.com/content/va0409rm86aqv9um

Karr AF, Lin X, Sanil AP, Reiter JP (2005) Secure regressions on distributed databases. J Comput Graph Stat 14:263–279

Lin X, Clifton C, Zhu M (2005) Privacy preserving clustering with distributed EM mixture modeling. Knowl Inf Syst 8(1):68–81

Lindell Y, Pinkas B (2002) Privacy preserving data mining. J Cryptol 15(3):177–206

Mielikainen T (2004) Privacy problems with anonymized transaction databases. In: Discovery science: 7th international conference proceedings, Lecture notes in computer science, vol 3245, Springer-Verlag, Berlin, January, pp 219–229

Naccache D, Stern J (1998) A new public key cryptosystem based on higher residues. In: Proceedings of the 5th ACM conference on computer and communications security, ACM, San Francisco, CA, pp 59–66

Okamoto T, Uchiyama S (1998) A new public-key cryptosystem as secure as factoring. In: Advances in cryptology—Eurocrypt ’98, Lecture notes in computer science, vol 1403. Springer-Verlag, Berlin, pp 308–318

Oliveira S, Zaiane O (2003) Privacy preserving clustering by data transformation. In: Proceedings of the 18th Brazilian symposium on databases, pp 304–318. [Online]. Available: citeseer.ifi.unizh.ch/oliveira03privacy.html

Paillier P (1999) Public key cryptosystems based on composite degree residuosity classes. In: Advances in Cryptology—Eurocrypt ’99 Proceedings, Lecture notes in computer science, vol 1592, Springer-Verlag, Berlin, pp 223–238

Ravikumar P, Cohen WW, Fienberg SE (2004) A secure protocol for computing string distance metrics. In: Proceedings of the workshop on privacy and security aspects of data mining at the international conference on data mining, pp 40–46

Rizvi SJ, Haritsa JR (2002) Maintaining data privacy in association rule mining. In: Proceedings of 28th international conference on very large data bases, VLDB, Hong Kong, pp 682–693. [Online]. Available: http://www.vldb.org/conf/2002/S19P03.pdf

Sanil AP, Karr AF, Lin X, Reiter JP (2004) Privacy preserving regression modelling via distributed computation. In: KDD ’04: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, pp 677–682

Standard for privacy of individually identifiable health information. Fed Regist 66(40), 2001. [Online]. Available: http://www.hhs.gov/ocr/hipaa/finalreg.html

Sweeney L, Shamos M (2004) A multiparty computation for randomly ordering players and making random selections. Carnegie Mellon University, School of Computer Science, Tech Rep CMU-ISRI-04-126

Vaidya J, Clifton C (2002) Privacy preserving association rule mining in vertically partitioned data. In: The Eighth ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton, Alberta, Canada, pp 639–644. [Online]. Available: http://doi.acm.org/10.1145/775047.775142

Vaidya J, Clifton C (2003) Privacy-preserving k-means clustering over vertically partitioned data. In: The ninth ACM SIGKDD international conference on knowledge discovery and data mining, Washington, DC, pp 206–215. [Online]. Available: http://doi.acm.org/10.1145/956750.956776

Vaidya J, Clifton C (2004) Privacy preserving naï ve bayes classifier for vertically partitioned data. In: 2004 SIAM international conference on data mining, Lake Buena Vista, FL, pp 522–526

Vaidya J, Clifton C (2004) Privacy-preserving outlier detection. In: Proceedings of the fourth IEEE international conference on data mining (ICDM’04). IEEE Computer Society Press, Los Alamitos, CA, pp 233–240

Vaidya J, Clifton C (2005) Privacy-preserving decision trees over vertically partitioned data. In: The 19th annual IFIP WG 11.3 working conference on data and applications security, Storrs, CT, 7–10 August. Springer, Berlin Heidelberg New York [Online]. Available: http://dx.doi.org/10.1007/11535706_11

Vaidya J, Clifton C (2005) Secure set intersection cardinality with application to association rule mining. J Comput Secur 13(4):593–622

Vaidya J, Clifton C, Zhu M (2005) Privacy-preserving data mining, 1st~edn., Advances in information security, vol~19, Springer-Verlag, Berlin. [Online]. Available: http://www.springeronline.com/sgw/cda/frontpage/0,11855,4-40356-72-52496494-0,00.html

Vapnik VN (1998) Statistical learning theory. Wiley, New York

Verykios VS, Bertino E, Fovino IN, Provenza LP, Saygin Y (2004) State-of-the-art in privacy preserving data mining. SIGMOD Rec 33(1):50–57. [Online]. Available: http://www.acm.org/sigmod/record/issues/0403/B1.bertion-sigmod-record2.pdf

Wright R, Yang Z (2004) Privacy-preserving bayesian network structure computation on distributed heterogeneous data. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining, Seattle, WA

Xu S, Zhang J, Han D, Wang J (2006) Singular value decomposition based data distortion strategy for privacy protection. Knowl Inf Syst 10(3):383–397. [Online]. Available: http://www.springerlink.com/content/r5778lt2q3763213

Yao AC (1986) How to generate and exchange secrets. In: Proceedings of the 27th IEEE symposium on foundations of computer science, IEEE Press, Los Alamitos, CA, pp 162–167.

Yu H, Jiang X, Vaidya J (2006) Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data. In: SAC ’06: Proceedings of the 2006 ACM symposium on applied computing, ACM, New York, pp 603–610

Yu H, Vaidya J (2004) Secure matrix addition. UIOWA Tech Rep UIOWA-CS-04-04. Available: http://hwanjoyu.org/paper/techreport04-04.pdf, Tech. Rep.

Yu H, Vaidya J, Jiang X (2006) Privacy-preserving SVM classification on vertically partitioned data. In: Proceedings of PAKDD ’06, Lecture notes in computer science, vol 3918. Springer-Verlag, Berlin, pp 647–656. [Online]. Available: http://dx.doi.org/10.1007/11731139_74

Yu H, Vaidya J (in press) Privacy preserving linear SVM classification. Submitted for publication to Data & Knowledge Engineering, Elsevier, Science, Amsterdam

Zhang N, Wang S, Zhao W (2004) A new scheme on privacy-preserving association rule mining. In: The 8th European conference on principles and practice of knowledge discovery in databases (PKDD 2004), Pisa, Italy. [Online]. Available: http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3202&spage=484

Zhu Y, Liu L (2004) Optimal randomization for privacy preserving data mining. In: KDD ’04: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, pp 761–766