Privacy and data protection in the enterprise world

Springer Science and Business Media LLC - Tập 10 Số 1 - Trang 37-45 - 2022
Imtiyazuddin Shaik1, Nishanth Chandran2, Rajan M. A1
1Cybersecurity and Privacy, TCS Research and Innovation, Hyderabad, India
2Principal Researcher, Microsoft Research, Bengaluru, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Verizon: 2021 data breach investigations report (2021). https://www.verizon.com/business/resources/reports/dbir/2021/masters-guide/

Josephine W, Nicole A (2021) Early gdpr penalties: analysis of implementation and fines through May 2020. J Inf Policy 11:63–103

Bob D, Mark VC (2017) Whittington: enterprise security and privacy: Why adding iot and big data makes it so much more difficult. In: 2017 international conference on engineering and technology (ICET), pp 1–7. https://doi.org/10.1109/ICEngTechnol.2017.8308189. IEEE

Domingo-Ferrer J, Farràs O, Ribes-González J, Sánchez D (2019) Privacy-preserving cloud computing on sensitive data: a survey of methods, products and challenges. Comput Commun 140–141:38–60

Saleem H, Naveed M (2020) Sok: anatomy of data breaches. Proc Priv Enhanc Technol 4:153–174

Cheng L, Liu F (2017) Enterprise data breach: causes, challenges, prevention, and future directions. WIREs Data Mining Knowl Discov 7(5):1211

Delton MA, Rajan MA, Lodha S (2021) Robust collaborative fraudulent transaction detection using federated. learning. In: 20th IEEE international conference on machine learning and applications (2021). IEEE

Ramamurthy A, Saurabh S, Gharote M, Lodha S (2020) Selection of cloud service providers for hosting web applications in a multi-cloud environment. In: 2020 IEEE international conference on services computing (SCC), pp 202–209 . IEEE

Mulligan DP, Petri G, Spinale N, Stockwell G, Vincent HJ (2021) Confidential computing–a brave new world. In: 2021 international symposium on secure and private execution environment design (SEED), pp 132–138 . IEEE

Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) Proceedings of the 41st annual ACM symposium on theory of computing, STOC 2009, Bethesda, MD, USA, pp 169–178 . https://doi.org/10.1145/1536414.1536440

Yao AC (1982) Protocols for secure computations (extended abstract). In: 23rd annual symposium on foundations of computer science, Chicago, Illinois, USA, pp 160–164 . https://doi.org/10.1109/SFCS.1982.38

Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) Advances in cryptology-EUROCRYPT ’99, international conference on the theory and application of cryptographic techniques, Prague, Czech Republic, Proceeding. Lecture Notes in Computer Science, vol 1592, pp 223–238 . https://doi.org/10.1007/3-540-48910-X_16

Gamal TE (1984) A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley GR, Chaum D (eds.) Advances in cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, Proceedings. Lecture Notes in Computer Science, vol 196, pp 10–18. https://doi.org/10.1007/3-540-39568-7_2

Goldwasser S, Micali S (1982) Probabilistic encryption and how to play mental poker keeping secret all partial information. In: Lewis HR, Simons BB, Burkhard WA, Landweber LH (eds.) Proceedings of the 14th annual ACM symposium on theory of computing, San Francisco, California, USA, pp 365–377 (1982). https://doi.org/10.1145/800070.802212

Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL. Microsoft Research, Redmond, WA (2021)

Kim M, Jiang X, Lauter K, Ismayilzada E, Shams S (2021) Hear: human action recognition via neural networks on homomorphically encrypted data. arXiv preprint arXiv:2104.09164

Riazi MS, Laine K, Pelton B, Dai W (2020) Heax: an architecture for computing on encrypted data. In: Proceedings of the twenty-fifth international conference on architectural support for programming languages and operating systems, pp 1295–1309

Pinkas B, Rosulek M, Trieu N, Yanai A (2020) PSI from paxos: Fast, malicious private set intersection. In: Canteaut A, Ishai Y (eds.) Advances in cryptology-EUROCRYPT 2020-39th annual international conference on the theory and applications of cryptographic techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol 12106, pp 739–767 https://doi.org/10.1007/978-3-030-45724-2_25

Chandran N, Dasgupta N, Gupta D, Obbattu SLB, Sekar S, Shah A (2021) Efficient linear multiparty PSI and extensions to circuit/quorum PSI. In: Kim Y, Kim J, Vigna G, Shi E (eds.) CCS ’21: 2021 ACM SIGSAC conference on computer and communications security, virtual event, Republic of Korea, pp 1182–1204 . https://doi.org/10.1145/3460120.3484591

Chandran N, Gupta D, Shah A (2022) Circuit-psi with linear complexity via relaxed batch OPPRF. Proc Priv Enhanc Technol 1:353–372. https://doi.org/10.2478/popets-2022-0018

Rathee D, Rathee M Goli RKK, Gupta D, Sharma R, Chandran N, Rastogi A (2021) SIRNN: a math library for secure inference of RNNs. In: IEEE S&P

Kumar N, Rathee M, Chandran N, Gupta D, Rastogi A, Sharma R (2020) Cryptflow: secure tensorflow inference. In: IEEE S&P 2020, pp 336–353 . https://doi.org/10.1109/SP40000.2020.00092

Rathee D, Rathee M, Kumar N, Chandran N, Gupta D, Rastogi A, Sharma R (2020) CrypTFlow2: practical 2-party secure inference. In: CCS

Knott B, Venkataraman S, Hannun A, Sengupta S, Ibrahim M, van der Maaten L (2021) CrypTen: secure multi-party computation meets machine learning. In: NeurIPS

Escudero D, Ghosh S, Keller M, Rachuri R, Scholl P (2020) Improved primitives for MPC over mixed arithmetic-binary circuits. In: CRYPTO

Chandran N, Gupta D, Obbattu SLB, Shah A (2022) SIMC: ML inference secure against malicious clients at Semi-Honest cost. In: USENIX Security

Koti N, Patra A, Rachuri R, Suresh A (2021) Tetrad: actively secure 4pc for secure training and inference. arXiv preprint arXiv:2106.02850

Dathathri R, Saarikivi O, Chen H, Laine K, Lauter K, Maleki S, Musuvathi M, Mytkowicz T (2019) Chet: an optimizing compiler for fully-homomorphic neural-network inferencing. In: Proceedings of the 40th ACM SIGPLAN conference on programming language design and implementation, pp 142–156

Gorantala S, Springer R, Purser-Haskell S, Lam W, Wilson R, Ali A, Astor E.P, Zukerman I, Ruth S, Dibak C et al. (2021) A general purpose transpiler for fully homomorphic encryption. arXiv preprint arXiv:2106.07893

Chandran N, Gupta D, Rastogi A, Sharma R, Tripathi S (2019) EzPC: programmable and efficient secure two-party computation for machine learning. In: IEEE European symposium on security and privacy, EuroS&P 2019, Stockholm, Sweden, pp 496–511

Araki T, Barak A, Furukawa J, Keller M, Lindell Y, Ohara K, Tsuchida H (2018) Generalizing the SPDZ compiler for other protocols. In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, CCS 2018, Toronto, ON, Canada, pp 880–895

Zyskind G, Nathan O, Pentland A (2015) Enigma: Decentralized computation platform with guaranteed privacy. arXiv preprint arXiv:1506.03471

Shaik I, Singh A.K, Narumanchi H, Emmadi N, Bhattachar RMA (2020) A recommender system for efficient implementation of privacy preserving machine learning primitives based on fhe. In: International symposium on cyber security cryptography and machine learning, pp 193–218 . Springer

Carpov S, Gama N, Georgieva M, Jetchev D (2021) Genoppml-a framework for genomic privacy-preserving machine learning. Cryptology ePrint Archive

Alvarez-Valle J, Bhatu P, Chandran N, Gupta D, Nori AV, Rastogi A, Rathee M, Sharma R, Ugare S (2020) Secure medical image analysis with cryptflow. CoRR abs/2012.05064, arXiv:2012.05064

Soin A, Bhatu P, Takhar R, Chandran N, Gupta D, Alvarez-Valle J, Sharma R, Mahajan V, Lungren MP (2021) Multi-institution encrypted medical imaging ai validation without data sharing. CoRR abs/2107.10230, arXiv:2107.10230

Kaissis G, Ziller A, Passerat-Palmbach J, Ryffel T, Usynin D, Trask A, Lima I, Mancuso J, Jungmann F, Steinborn M-M et al (2021) End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat Mach Intell 3(6):473–484

Imtiyazuddin S, Chaudhari R, Rajan M, Gubbi J, Balamuralidhar P, Lodha S (2021) Wip: Qos based recommendation system for efficient private inference of cnn using fhe. In: International conference on information systems security, ICISS 2021. Lecture Notes in Computer Science, vol 13146, pp 198–211. Springer

Jindal AK, Shaik I, Vasudha V, Chalamala SR, Rajan M, Lodha S (2020) Secure and privacy preserving method for biometric template protection using fully homomorphic encryption. In: 2020 IEEE 19th international conference on trust, security and privacy in computing and communications (TrustCom), pp 1127–1134. IEEE

Habeeb S, Shaik I, Emmadi N, Narumanchi H, Meena SDT, Rajan MA (2021) Wip: Privacy enabled biometric authentication based on proof of decryption techniques. In: International conference on information systems security, ICISS 2021. Lecture Notes in Computer Science, vol 13146, pp 185–197. Springer

Pinkas B, Schneider T, Zohner M (2014) Faster private set intersection based on OT extension. In: Fu K, Jung J (eds.) Proceedings of the 23rd USENIX security symposium, San Diego, CA, USA, pp 797–812. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas

Kolesnikov V, Matania N, Pinkas B, Rosulek M, Trieu N (2017) Practical multi-party private set intersection from symmetric-key techniques. In: Thuraisingham BM, Evans D, Malkin T, Xu D (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, pp 1257–1272. https://doi.org/10.1145/3133956.3134065