Privacy and data protection in the enterprise world
Tóm tắt
Từ khóa
Tài liệu tham khảo
Verizon: 2021 data breach investigations report (2021). https://www.verizon.com/business/resources/reports/dbir/2021/masters-guide/
Josephine W, Nicole A (2021) Early gdpr penalties: analysis of implementation and fines through May 2020. J Inf Policy 11:63–103
Bob D, Mark VC (2017) Whittington: enterprise security and privacy: Why adding iot and big data makes it so much more difficult. In: 2017 international conference on engineering and technology (ICET), pp 1–7. https://doi.org/10.1109/ICEngTechnol.2017.8308189. IEEE
Domingo-Ferrer J, Farràs O, Ribes-González J, Sánchez D (2019) Privacy-preserving cloud computing on sensitive data: a survey of methods, products and challenges. Comput Commun 140–141:38–60
Saleem H, Naveed M (2020) Sok: anatomy of data breaches. Proc Priv Enhanc Technol 4:153–174
Cheng L, Liu F (2017) Enterprise data breach: causes, challenges, prevention, and future directions. WIREs Data Mining Knowl Discov 7(5):1211
Delton MA, Rajan MA, Lodha S (2021) Robust collaborative fraudulent transaction detection using federated. learning. In: 20th IEEE international conference on machine learning and applications (2021). IEEE
Ramamurthy A, Saurabh S, Gharote M, Lodha S (2020) Selection of cloud service providers for hosting web applications in a multi-cloud environment. In: 2020 IEEE international conference on services computing (SCC), pp 202–209 . IEEE
Mulligan DP, Petri G, Spinale N, Stockwell G, Vincent HJ (2021) Confidential computing–a brave new world. In: 2021 international symposium on secure and private execution environment design (SEED), pp 132–138 . IEEE
Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) Proceedings of the 41st annual ACM symposium on theory of computing, STOC 2009, Bethesda, MD, USA, pp 169–178 . https://doi.org/10.1145/1536414.1536440
Yao AC (1982) Protocols for secure computations (extended abstract). In: 23rd annual symposium on foundations of computer science, Chicago, Illinois, USA, pp 160–164 . https://doi.org/10.1109/SFCS.1982.38
Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) Advances in cryptology-EUROCRYPT ’99, international conference on the theory and application of cryptographic techniques, Prague, Czech Republic, Proceeding. Lecture Notes in Computer Science, vol 1592, pp 223–238 . https://doi.org/10.1007/3-540-48910-X_16
Gamal TE (1984) A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley GR, Chaum D (eds.) Advances in cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, Proceedings. Lecture Notes in Computer Science, vol 196, pp 10–18. https://doi.org/10.1007/3-540-39568-7_2
Goldwasser S, Micali S (1982) Probabilistic encryption and how to play mental poker keeping secret all partial information. In: Lewis HR, Simons BB, Burkhard WA, Landweber LH (eds.) Proceedings of the 14th annual ACM symposium on theory of computing, San Francisco, California, USA, pp 365–377 (1982). https://doi.org/10.1145/800070.802212
Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL. Microsoft Research, Redmond, WA (2021)
Kim M, Jiang X, Lauter K, Ismayilzada E, Shams S (2021) Hear: human action recognition via neural networks on homomorphically encrypted data. arXiv preprint arXiv:2104.09164
Riazi MS, Laine K, Pelton B, Dai W (2020) Heax: an architecture for computing on encrypted data. In: Proceedings of the twenty-fifth international conference on architectural support for programming languages and operating systems, pp 1295–1309
Pinkas B, Rosulek M, Trieu N, Yanai A (2020) PSI from paxos: Fast, malicious private set intersection. In: Canteaut A, Ishai Y (eds.) Advances in cryptology-EUROCRYPT 2020-39th annual international conference on the theory and applications of cryptographic techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol 12106, pp 739–767 https://doi.org/10.1007/978-3-030-45724-2_25
Chandran N, Dasgupta N, Gupta D, Obbattu SLB, Sekar S, Shah A (2021) Efficient linear multiparty PSI and extensions to circuit/quorum PSI. In: Kim Y, Kim J, Vigna G, Shi E (eds.) CCS ’21: 2021 ACM SIGSAC conference on computer and communications security, virtual event, Republic of Korea, pp 1182–1204 . https://doi.org/10.1145/3460120.3484591
Chandran N, Gupta D, Shah A (2022) Circuit-psi with linear complexity via relaxed batch OPPRF. Proc Priv Enhanc Technol 1:353–372. https://doi.org/10.2478/popets-2022-0018
Rathee D, Rathee M Goli RKK, Gupta D, Sharma R, Chandran N, Rastogi A (2021) SIRNN: a math library for secure inference of RNNs. In: IEEE S&P
Kumar N, Rathee M, Chandran N, Gupta D, Rastogi A, Sharma R (2020) Cryptflow: secure tensorflow inference. In: IEEE S&P 2020, pp 336–353 . https://doi.org/10.1109/SP40000.2020.00092
Rathee D, Rathee M, Kumar N, Chandran N, Gupta D, Rastogi A, Sharma R (2020) CrypTFlow2: practical 2-party secure inference. In: CCS
Knott B, Venkataraman S, Hannun A, Sengupta S, Ibrahim M, van der Maaten L (2021) CrypTen: secure multi-party computation meets machine learning. In: NeurIPS
Escudero D, Ghosh S, Keller M, Rachuri R, Scholl P (2020) Improved primitives for MPC over mixed arithmetic-binary circuits. In: CRYPTO
Chandran N, Gupta D, Obbattu SLB, Shah A (2022) SIMC: ML inference secure against malicious clients at Semi-Honest cost. In: USENIX Security
Koti N, Patra A, Rachuri R, Suresh A (2021) Tetrad: actively secure 4pc for secure training and inference. arXiv preprint arXiv:2106.02850
Dathathri R, Saarikivi O, Chen H, Laine K, Lauter K, Maleki S, Musuvathi M, Mytkowicz T (2019) Chet: an optimizing compiler for fully-homomorphic neural-network inferencing. In: Proceedings of the 40th ACM SIGPLAN conference on programming language design and implementation, pp 142–156
Gorantala S, Springer R, Purser-Haskell S, Lam W, Wilson R, Ali A, Astor E.P, Zukerman I, Ruth S, Dibak C et al. (2021) A general purpose transpiler for fully homomorphic encryption. arXiv preprint arXiv:2106.07893
Chandran N, Gupta D, Rastogi A, Sharma R, Tripathi S (2019) EzPC: programmable and efficient secure two-party computation for machine learning. In: IEEE European symposium on security and privacy, EuroS&P 2019, Stockholm, Sweden, pp 496–511
Araki T, Barak A, Furukawa J, Keller M, Lindell Y, Ohara K, Tsuchida H (2018) Generalizing the SPDZ compiler for other protocols. In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, CCS 2018, Toronto, ON, Canada, pp 880–895
Zyskind G, Nathan O, Pentland A (2015) Enigma: Decentralized computation platform with guaranteed privacy. arXiv preprint arXiv:1506.03471
Shaik I, Singh A.K, Narumanchi H, Emmadi N, Bhattachar RMA (2020) A recommender system for efficient implementation of privacy preserving machine learning primitives based on fhe. In: International symposium on cyber security cryptography and machine learning, pp 193–218 . Springer
Carpov S, Gama N, Georgieva M, Jetchev D (2021) Genoppml-a framework for genomic privacy-preserving machine learning. Cryptology ePrint Archive
Alvarez-Valle J, Bhatu P, Chandran N, Gupta D, Nori AV, Rastogi A, Rathee M, Sharma R, Ugare S (2020) Secure medical image analysis with cryptflow. CoRR abs/2012.05064, arXiv:2012.05064
Soin A, Bhatu P, Takhar R, Chandran N, Gupta D, Alvarez-Valle J, Sharma R, Mahajan V, Lungren MP (2021) Multi-institution encrypted medical imaging ai validation without data sharing. CoRR abs/2107.10230, arXiv:2107.10230
Kaissis G, Ziller A, Passerat-Palmbach J, Ryffel T, Usynin D, Trask A, Lima I, Mancuso J, Jungmann F, Steinborn M-M et al (2021) End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat Mach Intell 3(6):473–484
Imtiyazuddin S, Chaudhari R, Rajan M, Gubbi J, Balamuralidhar P, Lodha S (2021) Wip: Qos based recommendation system for efficient private inference of cnn using fhe. In: International conference on information systems security, ICISS 2021. Lecture Notes in Computer Science, vol 13146, pp 198–211. Springer
Jindal AK, Shaik I, Vasudha V, Chalamala SR, Rajan M, Lodha S (2020) Secure and privacy preserving method for biometric template protection using fully homomorphic encryption. In: 2020 IEEE 19th international conference on trust, security and privacy in computing and communications (TrustCom), pp 1127–1134. IEEE
Habeeb S, Shaik I, Emmadi N, Narumanchi H, Meena SDT, Rajan MA (2021) Wip: Privacy enabled biometric authentication based on proof of decryption techniques. In: International conference on information systems security, ICISS 2021. Lecture Notes in Computer Science, vol 13146, pp 185–197. Springer
Pinkas B, Schneider T, Zohner M (2014) Faster private set intersection based on OT extension. In: Fu K, Jung J (eds.) Proceedings of the 23rd USENIX security symposium, San Diego, CA, USA, pp 797–812. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
Kolesnikov V, Matania N, Pinkas B, Rosulek M, Trieu N (2017) Practical multi-party private set intersection from symmetric-key techniques. In: Thuraisingham BM, Evans D, Malkin T, Xu D (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, pp 1257–1272. https://doi.org/10.1145/3133956.3134065