Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ưu tiên các tiểu lưu vực cho xói mòn đất dựa trên các đặc trưng hình học bằng cách sử dụng AHP mờ và yếu tố hợp nhất trong lưu vực sông Jainti, Jharkhand, Ấn Độ Đông
Tóm tắt
Sự thoái hoá đất ở các vùng rìa của cao nguyên Chotanagpur gây ra những thiệt hại đáng kể cho đất đai và năng suất nông nghiệp, từ đó ảnh hưởng đến sự bền vững của con người, điều này yêu cầu các biện pháp đặc biệt. Vì vậy, nghiên cứu này nhằm xác định tính dễ bị xói mòn ở quy mô tiểu lưu vực để phân bổ các tiểu lưu vực rất dễ bị xói mòn. Mười bốn thuộc tính hình học có liên quan chặt chẽ đến quá trình xói mòn được xem xét nhằm ưu tiên các lưu vực thông qua việc áp dụng AHP mờ dựa trên quy trình phân tích thứ bậc và yếu tố hợp nhất (CF). Một mô hình độ cao số với độ phân giải không gian 30 m cùng với bản đồ địa hình của Ấn Độ và hình ảnh Google Earth được sử dụng để trích xuất các thuộc tính hình học cơ bản, diện tích, cảnh quan và hình dạng. Các chỉ số hình học được chuyển đổi thành định dạng dữ liệu không đơn vị 8-bit (0–255), và trọng số ưu tiên được gán cho các điểm kiểm soát thuộc phạm vi xác định trong AHP mờ trong khi các thứ hạng liên tiếp được gán cho các chỉ số dựa trên mối liên hệ của chúng với quá trình xói mòn để có được các giá trị CF cho từng lưu vực. Kết quả ưu tiên qua cả hai phương pháp cho thấy đầu ra tương đối giống nhau, cả hai đều xác định tiểu lưu vực 6 và 13 là rất dễ bị xói mòn, và CF phân loại tiểu lưu vực 4 và 8 là dễ bị xói mòn cao trong khi AHP mờ nhận ra tiểu lưu vực 4, 8, 5, 11, 14 thuộc thể loại rủi ro cao. Do đó, cả hai kết quả đều thể hiện hiệu quả tốt của các chỉ số hình học trong việc đánh giá ưu tiên dễ bị xói mòn ở quy mô tiểu lưu vực.
Từ khóa
#xói mòn đất #hình học #AHP mờ #yếu tố hợp nhất #lưu vực sông #Jharkhand #Ấn Độ ĐôngTài liệu tham khảo
Abdul Rahaman, S., Abdul Ajeez, S., Aruchamy, S., & Jegankumar, R. (2015). Prioritization of sub watersheds based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system: A study of Kallar Watershed, Tamil Nadu. Aquatic Procedia,4, 1322–1330. https://doi.org/10.1016/j.aqpro.2015.02.172.
Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydro-environment Research,511, 850–860.
Ahmed, R., Sajjad, H., & Husain, I. (2017). Morphometric parameters-based prioritization of sub-watersheds using fuzzy analytical hierarchy process: A case study of lower Barpani Watershed, India. Natural Resources Research,27(1), 67–75. https://doi.org/10.1007/s11053-017-9337-4.
Alexakis, D. D., Hadjimitsis Diofantos, G., & Athos, A. (2013). Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of Yialias in Cyprus. Atmospheric Research,131, 108–124.
Altaf, S., Meraj, G., & Ahmad Romshoo, S. (2014). Morphometry and land cover based multicriteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environmental Monitoring and Assessment,186, 8391–8412.
Ameri, A. A., Pourghasemi, H. R., & Cerda, A. (2018). Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Science of the Total Environment,613–614, 1385–1400. https://doi.org/10.1016/j.scitotenv.2017.09.210.
Balasubramanian, A., Duraisamy, K., Thirumalaisamy, S., Krishnaraj, S., & Yatheendradasan, R. K. (2017). Prioritization of subwatersheds based on quantitative morphometric analysis in lower Bhavani basin, Tamil Nadu, India using DEM and GIS techniques. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3312-6.
Bera, A. (2017). Assessment of soil loss by universal soil loss equation (USLE) model using GIS techniques: A case study of Gumti River Basin, Tripura, India. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-017-0289-9.
Bharath, H. A., Vinay, S., Ramachandra, T.V., (2014). Landscape dynamics modelling through integrated Markov, Fuzzy-AHP and cellular automata. In The proceeding of international geoscience and remote sensing symposium (IEEE IGARSS 2014), July 13th–July 19th 2014, Quebec City convention centre, Quebec, Canada.
Biswas, H., Raizada, A., Mandal, D., Kumar, S., Srinivas, S., & Mishra, P. K. (2015). Identification of areas vulnerable to soil erosion risk in India using GIS methods. Solid Earth,6, 1247–1257.
Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritization of sub-watersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing,27, 155–166.
Cevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology,44, 949–962.
Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531–539.
Clarke, J. I. (1996). Morphometry from maps. Essays in geomorphology (pp. 235–274). New York: Elsevier publication. Co.
Deepika, B., Avinash, K., & Jayappa, K. S. (2013). Integration of hydrological factors and demarcation of groundwater prospect zones: Insights from remote sensing and GIS techniques. Environmental Earth Sciences,70(3), 1319–1338. https://doi.org/10.1007/s12665-013-2218-1.
Deju, R. (1971). Regional hydrology fundamentals. New York: Gordon and Breach Science Publishers.
Dubois, D., Esteva, F., Godo, L., & Prade, H. (2007). Fuzzy-set based logics: An history oriented presentation of their main developments. In D. M. Gabbay & J. Woods (Eds.), Handbook of the history of logic (pp. 325–449). London: Elsevier.
Esper Angillieri, M. (2008). Morphometric analysis of Colanguil River Basin and flash flood hazard, San Juan. Argentina. Environmental Geology,55, 107–111.
Faniran, A. (1968). The index of drainage intensity: A provisional new drainage factor. Australian Journal of Science,31, 328–330.
Farhan, Y., & Anaba, O. (2016). A remote sensing and GIS approach for prioritization of Wadi Shueib Mini-Watersheds (Central Jordan) based on morphometric and Soil erosion susceptibility analysis. Journal of Geographic Information System,8, 1–19.
Georgiou, D., Mohammed, E. S., & Rozakis, S. (2015). Multi-criteria decision making on the energy supply configuration of autonomous desalination units. Renewable Energy,75, 459–467.
Ghosh, S., & Guchhait, S. K. (2016). Geomorphic threshold estimation for gully erosion in the lateritic soil of Birbhum, West Bengal, India. Soil Discussions. https://doi.org/10.5194/soil-2016-48.
Horton, R. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin,56, 275–370.
Ifabiyi, I. P., & Eniolorunda, N. B. (2012). Watershed characteristics and their implication for hydrologic response in the upper Sokoto basin, Nigeria. Journal of Geography and Geology,4(2), 147.
Jasmin, I., & Mallikarjuna, P. (2012). Morphometric analysis of Araniar river basin using remote sensing and geographical information system in the assessment of groundwater potential. Arabian Journal of Geosciences,6(10), 3683–3692. https://doi.org/10.1007/s12517-012-0627-1.
Jenks, G. F. (1989). Geographic logic in line generalization. Cartographica,26(1), 27–42.
Kadam, A. K., Jaweed, T. H., Umrikar, B. N., Hussain, K., & Sankhua, R. N. (2017). Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique. Modeling Earth Systems and Environment,3(4), 1663–1673. https://doi.org/10.1007/s40808-017-0386-9.
Kanth, T., & Hassan, Z. (2012). Morphometric analysis and prioritization of watersheds for soil and water resources management in water catchment using geo-spatial tools. International Journal of Geology, Earth and Environmental Sciences,2, 30–41.
Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., et al. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil,2, 111–128. https://doi.org/10.5194/soil-2-111-2016.
Keshavarzi, A., & Heidari, A. (2010). Land suitability evaluation using Fuzzy continuous classification (a case study: Ziaran region). Modern Applied Science,4(7), 72–82.
Khan, M. A., Gupta, V. P., & Moharana, P. C. (2001). Watershed prioritization using remote sensing and geographical information system: A case study from Guhiya, India. Journal of Arid Environments,49, 465–475.
Kharat, M. G., Kamble, S. J., Raut, R. D., Kamble, S. S., & Dhume, S. M. (2016). Modeling landfill site selection using an integrated fuzzy MCDM approach. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-016-0106-x.
Kottagoda, S. D., & Abeysingha, N. S. (2017). Morphometric analysis of watersheds in Kelani river basin for soil and water conservation. Journal of the National Science Foundation of Sri Lanka,45(3), 6.
Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology,57(3), 483–497. https://doi.org/10.1007/s00254-008-1318-9.
Lykoudi, E., & Angelaki, M. (2004). Contribution to the morphometry parameters of an hydrographic network to the investigation of the neotechtonic activity: An application to the upper a Cheloos River. Bulletin of Greek Geological Society,36, 1084–1092.
Magesh, N. S., Jitheshal, K. V., Chandrasekar, N., & Jini, K. V. (2013). Geographical information system based morphomteric analysis of Bharathapuzha River Basin, Kerala, India. Applied Water Science. https://doi.org/10.1007/s13201-013-0095-0.
Malik, M., Bhat, M., & Kuchay, N. A. (2011). Watershed based drainage morphometric analysis of Lidder catchment in Kashmir valley using Geographical Information System. The Recent Research in Science and Technology,3(4), 118–126.
Masselink, R. J., Heckmann, T., Temme, A. J., Anders, N. S., Gooren, H., & Keesstra, S. D. (2017). A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes,31(1), 207–220.
Mekonnen, M., Keesstra, S. D., Baartman, J. E., Stroosnijder, L., & Maroulis, J. (2017). Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr Catchment, Northwest Ethiopia. Land Degradation and Development,28(2), 708–717.
Meraj, G., Romshoo, S. A., Ayoub, S., & Altaf, S. (2017). Geoinformatics based approach for estimating the sediment yield of the mountainous watersheds in Kashmir Himalaya, India. Geocarto International,2, 1–25.
Meraj, G., Romshoo, S. A., Yousuf, A. R., Altaf, S., & Altaf, F. (2015). Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya: Reply to comment by Shah 2015. Natural Hazards,78(1), 1–5.
Mesa, L. M. (2006). Morphometric analysis of a subtropical Andean basin (Tucumam, Argentina). Environmental Geology,50(8), 1235–1242.
Miller, V. C., (1953). A quantitative geomorphologic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Project NR 389042, Tech Report 3. Columbia University Department of Geology, ONR Geography Branch, New York.
Mol, G., & Keesstra, S. D. (2012). Soil science in a changing world. Current Opinions in Environmental Sustainability,4, 473–477.
Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological and biological applications. Hydrological Processes,5(1), 3–30.
Mulliner, E., Malys, N., & Maliene, V. (2016). Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega,59, 146–156.
Nasre, R. A., Nagaraju, M. S. S., Srivastava, R., Maji, A. K., & Barthwal, A. K. (2013). Soil erosion mapping for land resources management in Karanji watershed of Yavatmal district, Maharashtra using remote sensing and GIS techniques. The Indian Journal of Soil Conservation,41(3), 248–256.
Nooka Ratnam, K., Srivastava, Y. K., Venkateshwara Rao, V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis: Remote sensing and GIS perspecative. Journal of the Indian Society of Remote Sensing,33, 25–38.
Okumura, M., & Araujo, A. G. (2014). Long-term cultural stability in hunter–gatherers: A case study using traditional and geometric morphometric analysis of lithic stemmed bifacial points from Southern Brazil. Journal of Archaeological Science,45, 59–71.
Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water,6(6), 1515–1545.
Patel, D., Dholakia, M., Naresh, N., & Srivastava, P. (2012). Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi Basin. Journal of the Indian Society of Remote Sensing,40, 299–312. https://doi.org/10.1007/s12524-011-0147-6.
Patel, D., Gajjar, C., & Srivastava, P. (2013). Prioritization of Malesari Mini-Watersheds through morphometric analysis: A remote sensing and GIS perspective. Environmental Earth Sciences,69, 2643–2656. https://doi.org/10.1007/s12665-012-2086-0.
Patel, D. P., & Srivastava, P. K. (2013). Flood hazards mitigation analysis using remote sensing and GIS: Correspondence with town planning scheme. Water Resources Management,27(7), 2353–2368. https://doi.org/10.1007/s11269-013-0291-6.
Phillips, J. D. (1990). Relative importance of factors influencing fluvial soil loss at the global scale. Science,290, 547–568.
Pike, R. J. (2000). Geomorphometry: Diversity in quantitative surface analysis. Progress in Physical Geography,24, 1–20.
Pradhan, B., & Pirasteh, P. (2010). Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Advances,3(2), 26–34.
Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology,55, 467–475.
Rai, P. K., Mishra, V. N., & Mohan, K. (2017). A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment,7, 9–20. https://doi.org/10.1016/j.rsase.2017.05.001.
Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. (2014). A GIS based approach in drainage morphometric analysis of Kanhar River basin, India. Applied Water Science. https://doi.org/10.1007/s13201-014-0238-y.
Richardson, C. P., & Amankwatia, K. (2018). GIS-based analytic hierarchy process approach to watershed vulnerability in Bernalillo County, New Mexico. Journal of Hydrologic Engineering,23(5), 04018010.
Rodrigo-Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keestra, S. D., Prosdocimi, M., et al. (2016). Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of the Total Environment,565, 1165–1174. https://doi.org/10.1016/j.scitotenv.2016.05.163.
Rodrigo-Comino, J., Martínez-Hernández, C., Iserloh, T., & Cerdà, A. (2017). The contrasted impact of land abandonment on soil erosion in mediterranean agriculture fields. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60441-7.
Rudraiah, M., Govindaiah, S., & Vittala, S. S. (2008). Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna River basin, Gulburga District, Karnataka. Indian Society of Remote Sensing,36, 351–360.
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology,15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5.
Saaty, T. L. (1980). The analytical hierarchy process (p. 350). New York: McGraw Hill.
Saaty, T. L., & Vargas, L. G. (2001). Models, methods, concepts, and applications of the analytic hierarchy process (1st ed., p. 333). Boston: Kluwer Academic.
Saha, S. (2017). Groundwater potential mapping using analytical hierarchical process: A study on Md. Bazar Block of Birbhum District, West Bengal. Spatial. Information Research,25(4), 615–626. https://doi.org/10.1007/s41324-017-0127-1.
Schumm, S. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin,67, 597–646.
Sharma, N. K., Singh, R. J., Mandal, D., Kumar, A., Alam, N. M., & Keesstra, S. (2017). Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maizewheat rotation of Himalaya, India. Agriculture, Ecosystems and Environment,247, 43–53.
Shit, P. K., Nandi, A. R., & Bhunia, G. S. (2015). Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. Model Earth Systems and Environment,1(28), 1–12.
Singh, S., & Dubey, A. (1994). Geoenvironmental planning of watershed in India (pp. 28–69). Allahabad, India: Chugh Publications.
Singh, N., & Singh, K. K. (2014). Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Applied Water Science,7(1), 275–283. https://doi.org/10.1007/s13201-014-0243-1.
Smith, G. H. (1935). The relative relief of Ohio. Geographical Review,25, 272–284.
Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668.
Sreedevi, P. D., Owais, S., Khan, H. H., & Ahamed, S. (2009). Morphometric analysis of a watershed of South India using SRTM data and GIS. The Journal of the Geological Society of India,73(4), 543–552. https://doi.org/10.1007/s12594-009-0038-4.
Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin Geological Society of America,63, 1117.
Strahler, A. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union,38, 913–920.
Strahler, A. (1964). Quantitative geomorphology of drainage basins and channel network. In V. Chow (Ed.), Handbook of applied hydrology (pp. 439–476). New York: McGraw-Hill.
Sureh, M., Sudhakar, S., Tiwari, K. N., & Chowdary, V. M. (2004). Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing. Journal of the Indian Society of Remote Sensing.,32, 249–259.
Thomas, J., Joseph, S., Thrivikramji, K. P., Abe, G., & Kannan, N. (2012). Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India. Environmental Earth Sciences,66(8), 2353–2366.
Todorovski, L., & Džeroski, S. (2006). Integrating knowledge driven and data-driven approaches to modeling. Ecological Modelling,194(1), 3–13.
Wijesundara, N. C., Abeysingha, N. S., & Dissanayake, D. M. S. L. B. (2018). GIS-based soil loss estimation using RUSLE model: A case of Kirindi Oya river basin, Sri Lanka. Modeling Earth Systems and Environment,4(1), 251–262. https://doi.org/10.1007/s40808-018-0419-z.
Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences,62(3), 611–623.