Principles of photocatalysis

Interface Science and Technology - Tập 35 - Trang 1-52 - 2023
Linxi Wang1, Jiaguo Yu1
1Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, People’s Republic of China

Tài liệu tham khảo

Peruchon, 2009, Photocatalytic efficiencies of self-cleaning glasses. Influence of physical factors, Photochem. Photobiol. Sci., 8, 1040, 10.1039/b902139f Salvadores, 2020, Efficiencies evaluation of photocatalytic paints under indoor and outdoor air conditions, Front. Chem., 8, 551710, 10.3389/fchem.2020.551710 Muller, 1994, Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994), Pure Appl. Chem., 66, 1077, 10.1351/pac199466051077 Markets, 2019 Moradi, 2021, Chapter 9—design of active photocatalysts and visible light photocatalysis, 557 Peternel, 2007, Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution, J. Hazard Mater., 148, 477, 10.1016/j.jhazmat.2007.02.072 Shevela, 2017, Evolution of the Z-scheme of photosynthesis: a perspective, Photosynth. Res., 133, 5, 10.1007/s11120-016-0333-z El-Khouly, 2017, Solar energy conversion: from natural to artificial photosynthesis, J. Photochem. Photobiol., C, 31, 36, 10.1016/j.jphotochemrev.2017.02.001 Raven, 2005 Flamigni, 2007, Photochemistry and photophysics of coordination compounds: iridium, 143 Juris, 1988, Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coord. Chem. Rev., 84, 85, 10.1016/0010-8545(88)80032-8 Fukuzumi, 2016, Homogeneous and heterogeneous photocatalytic water oxidation by persulfate, Chem. Asian J., 11, 1138, 10.1002/asia.201501329 Hering, 2012, Visible-light-Mediated α-arylation of enol acetates using aryl diazonium salts, J. Org. Chem., 77, 10347, 10.1021/jo301984p Hirose, 2003, Photocatalytic carbon dioxide photoreduction by Co(bpy)32+ sensitized by Ru(bpy)32+ fixed to cation exchange polymer, J. Mol. Catal. A., 193, 27, 10.1016/S1381-1169(02)00478-8 Silva, 2007, Photocatalytic degradation of chlorophenols using Ru(bpy)32+/S2O82-, Environ. Chem. Lett., 5, 143, 10.1007/s10311-007-0096-z Bobo, 2021, Recent advancements in the development of molecular organic photocatalysts, Org. Biomol. Chem., 19, 4816, 10.1039/D1OB00396H Kumar, 2019, Covalently hooked EOSIN-Y in a Zr(IV) framework as visible-light mediated, heterogeneous photocatalyst for efficient CAH functionalization of tertiary amines, J. Catal., 371, 298, 10.1016/j.jcat.2019.02.011 Weaire, 2012, Energy bands, 43 Coronado, 2013, A historical introduction to photocatalysis, 1 Bruner, 1911, Information on the photocatalysis I the light reaction in uranium salt plus oxalic acid mixtures, Z Elktrochem Angew P, 17, 354 Landau, 1913, Le phénomène de la photocatalyse, Compt. Rend., 156, 1894 Baly, 1921, Fmmaldehyde and carbohydrates from carbon dioxide and water, J. Chem. Soc. Trans., 119, 1025 Baur, 1924, The action of light on dissolved silver salts in the presence of zinc oxide, Helv. Chim. Acta, 7, 910, 10.1002/hlca.192400701109 Baur, 1927, Über photolytisehe Bildung von Hydroperoxyd, Helv. Chim. Acta, 10, 901, 10.1002/hlca.192701001113 Filimonov, 1964, Photocatalytic oxidation of gaseous isopropanol on ZnO + TiO2, Dokl. Akad. Nauk SSSR, 154, 922 Kato, 1964, Titanium dioxide-photocatalyzed oxidation. I. Titanium dioxide photocatalyzed liquid phase oxidation of tetralin, Kagaku Kogyo, 67, 1136, 10.1246/nikkashi1898.67.8_1136 Ikekawa, 1965, Titanium dioxide-photocatalyzed oxidation. I. Titanium dioxide photocatalyzed liquid phase oxidation of tetralin, Bull. Chem. Soc. Jpn., 38, 32, 10.1246/bcsj.38.32 Doerffler, 1964, Heterogeneous photocatalysis I. Influence of oxidizing and reducing gases on the electrical conductivity of dark and illuminated zinc oxide surfaces, J. Catal., 3, 156, 10.1016/0021-9517(64)90123-X Formenti, 1970, Controlled photooxidation of paraffins and olefins over anatase at room temperature, CR Seances Acad. Sci. Ser. C., 270, 138 Muller, 1970, Decomposition of lsopropyl alcohol photosensitized by zinc oxide, Nature, 225, 728, 10.1038/225728a0 Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0 Nozik, 1977, Photochemical diodes, Appl. Phys. Lett., 30, 567, 10.1063/1.89262 Wagner, 1980, Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals, J. Am. Chem. Soc., 102, 5494, 10.1021/ja00537a013 Sakata, 1981, Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water, Chem. Phys. Lett., 80, 341, 10.1016/0009-2614(81)80121-2 Zhou, 2016, Challenges and perspectives in designing artificial photosynthetic systems, Chem. Eur J., 22, 9870, 10.1002/chem.201600289 Bickely, 1979, Photocatalytically induced fixation of molecular nitrogen by near UV radiation, Nature, 280, 306, 10.1038/280306a0 Kormann, 1988, Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand, Environ. Sci. Technol., 22, 798, 10.1021/es00172a009 Zhang, 2022, Emerging S‐scheme photocatalyst, Adv. Mater., 34, 2107668, 10.1002/adma.202107668 Coddington, 2016, A solar irradiance climate data record, Bull. Am. Meteorol. Soc., 97, 1265, 10.1175/BAMS-D-14-00265.1 Yang, 2021, Near-infrared-responsive photocatalysts, Small Methods, 5, 2001042, 10.1002/smtd.202001042 Wang, 2022, Dynamics of photogenerated charge carriers in inorganic/organic S-scheme heterojunctions, J. Phys. Chem. Lett., 13, 4695, 10.1021/acs.jpclett.2c01332 Zhou, 2013, Mesoporous TiO2: preparation, doping, and as a composite for photocatalysis, ChemCatChem, 5, 885, 10.1002/cctc.201200519 Sayed, 2022, Non-Noble plasmonic metal-based photocatalysts, Chem. Rev., 122, 10484, 10.1021/acs.chemrev.1c00473 Wang, 2022, Inorganic metal-oxide photocatalyst for H2O2 production, Small, 18, 2104561, 10.1002/smll.202104561 Yang, 2021, TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity, Nano Res., 2021 Meng, 2021, TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity, Appl. Catal., B, 289, 120039, 10.1016/j.apcatb.2021.120039 Xu, 2022, Design principle of S-scheme heterojunction photocatalyst, J. Mater. Sci. Technol., 124, 171, 10.1016/j.jmst.2022.02.016 Wang, 2020, Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity, J. Mater. Sci. Technol., 56, 143, 10.1016/j.jmst.2020.02.062 Bie, 2022, Challenges for photocatalytic overall water splitting, Chem, 8, 1567, 10.1016/j.chempr.2022.04.013 Kohtani, 2017, Reactivity of trapped and accumulated electrons in titanium dioxide photocatalysis, Catalysts, 7, 303, 10.3390/catal7100303 Chen, 2008, The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials, J. Am. Chem. Soc., 130, 5018, 10.1021/ja711023z Wang, 2021, Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation, Rare Met., 40, 2369, 10.1007/s12598-021-01731-2 Tamaki, 2009, Femtosecond visible-to-IR spectroscopy of TiO2 nanocrystalline films: elucidation of the electron mobility before deep trapping, J. Phys. Chem. C, 113, 11741, 10.1021/jp901833j Rothenberger, 1985, Charge carrier trapping and recombination dynamics in small semiconductor particles, J. Am. Chem. Soc., 107, 8054, 10.1021/ja00312a043 Qian, 2019, Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview, Catal. Today, 335, 78, 10.1016/j.cattod.2018.10.053 Meng, 2019, Dual cocatalysts in TiO2 photocatalysis, Adv. Mater., 31, 1807660, 10.1002/adma.201807660 Wen, 2015, Photocatalysis fundamentals and surface modification of TiO2 nanomaterials, Chin. J. Catal., 36, 2049, 10.1016/S1872-2067(15)60999-8 Skinner, 1995, Femtosecond investigation of electron trapping in semiconductor nanoclusters, J. Phys. Chem., 99, 7853, 10.1021/j100020a003 Schneider, 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892 Wang, 2022, Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction, Appl. Catal., B, 301, 120814, 10.1016/j.apcatb.2021.120814 Gao, 2019, Boosting visible-light-driven hydrogen evolution of covalent organic frameworks through compositing with MoS2: a promising candidate for noble-metal-free photocatalysts, J. Mater. Chem. A., 7, 20193, 10.1039/C9TA07319A Sprick, 2015, Tunable organic photocatalysts for visible-light-driven hydrogen evolution, J. Am. Chem. Soc., 137, 3265, 10.1021/ja511552k il Kim, 2016, Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts, Energy Environ. Sci., 9, 1063, 10.1039/C5EE03115J Xi, 2021, Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field, ACS Appl. Mater. Interfaces, 13, 39491, 10.1021/acsami.1c11233 Xu, 2020, S-scheme heterojunction photocatalyst, Chem, 6, 1543, 10.1016/j.chempr.2020.06.010 Nezar, 2018, Electron acceptors effect on photocatalytic degradation of metformin under sunlight irradiation, Sol. Energy, 164, 267, 10.1016/j.solener.2018.02.065 Kim, 2019, Solid-phase photocatalysts: physical vapor deposition of Au nanoislands on porous TiO2 films for millimolar H2O2 production within a few minutes, ACS Catal., 9, 9206, 10.1021/acscatal.9b02269 Wang, 2020, Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection, Nat. Commun., 11, 4465, 10.1038/s41467-020-18267-1 Walsh, 2009, Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals, Chem. Mater., 21, 547, 10.1021/cm802894z Suryawanshi, 2018, Band gap engineering in PbO nanostructured thin films by Mn doping, Thin Solid Films, 645, 87, 10.1016/j.tsf.2017.10.016 Zhou, 2015, Band gap engineering of bulk and nanosheet SnO: an insight into the interlayer Sn-Sn lone pair interactions, Phys. Chem. Chem. Phys., 17, 17816, 10.1039/C5CP02255J Li, 2014, Tailoring the band structure of β-Bi2O3 by co-doping for realized photocatalytic hydrogen generation, Chem. Phys. Lett., 601, 92, 10.1016/j.cplett.2014.03.091 Abdi, 2017, Recent developments in complex metal oxide photoelectrodes, J. Phys. D., 50, 193002, 10.1088/1361-6463/aa6738 He, 2019, State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis, Nano Today, 28, 100763, 10.1016/j.nantod.2019.100763 Shen, 2019, Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction, Ceram. Int., 45, 24146, 10.1016/j.ceramint.2019.08.123 Bai, 2018, “Two channel” photocatalytic hydrogen peroxide production using g-C3N4 coated CuO nanorod heterojunction catalysts prepared via a novel molten salt-assisted microwave process, New J. Chem., 42, 13529, 10.1039/C8NJ02565G Zhang, 2020, Simultaneous nitrogen doping and Cu2O oxidization by one-step plasma treatment toward nitrogen-doped Cu2O@CuO heterostructure: an efficient photocatalyst for H2O2 evolution under visible light, Appl. Surf. Sci., 527, 146908, 10.1016/j.apsusc.2020.146908 Luan, 2014, Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities, Sci. Rep., 4, 6180, 10.1038/srep06180 Carey Iv, 2017, Valence and conduction band offsets in AZO/Ga2O3 heterostructures, Vacuum, 141, 103, 10.1016/j.vacuum.2017.03.031 Yang, 2022, MXene-derived anatase-TiO2/rutile-TiO2/in2O3 heterojunctions toward efficient hydrogen evolution, Colloids Surf. A Physicochem. Eng. Asp., 653, 129881, 10.1016/j.colsurfa.2022.129881 Walsh, 2008, Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy, Phys. Rev. Lett., 100, 167402, 10.1103/PhysRevLett.100.167402 Kim, 2015, Characterization and photocatalytic performance of SnO2-CNT nanocomposites, Appl. Surf. Sci., 357, 302, 10.1016/j.apsusc.2015.09.044 Li, 2015, Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers, J. Colloid Interface Sci., 449, 115, 10.1016/j.jcis.2014.10.072 Bhatt, 2015, Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells, J. Mater. Chem. A., 3, 10632, 10.1039/C5TA00257E Jiang, 2022, Effect of calcination temperatures on photocatalytic H2O2-production activity of ZnO nanorods, Chin. J. Catal., 43, 226, 10.1016/S1872-2067(21)63832-9 Liao, 2014, Efficient solar water-splitting using a nanocrystalline CoO photocatalyst, Nat. Nanotechnol., 9, 69, 10.1038/nnano.2013.272 Park, 2019, Optimal methodology for explicit solvation prediction of band edges of transition metal oxide photocatalysts, Commun. Chem., 2, 79, 10.1038/s42004-019-0179-3 Park, 2019, Photocatalytic hydrogen evolution activity of Co/CoO hybrid structures: a first-principles study on the Co layer thickness effect, J. Mater. Chem. A, 7, 16176, 10.1039/C9TA04508B Di, 2022, Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production, J. Mater. Sci. Technol., 124, 209, 10.1016/j.jmst.2021.12.071 Ge, 2019, S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst, ChemCatChem, 11, 6301, 10.1002/cctc.201901486 Di, 2020, CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production, J. Mater. Sci. Technol., 56, 170, 10.1016/j.jmst.2020.03.032 Wang, 2022, Electric field coupling in the S-scheme CdS/BiOCl heterojunction for boosted charge transport toward photocatalytic CO2 reduction, ACS Appl. Energy Mater., 5, 1149, 10.1021/acsaem.1c03531 Xiao, 2022, Sonochemical fabrication of s-scheme hierarchical CdS/BiOBr heterojunction photocatalyst with high performance for carbon dioxide reduction, Part. Part. Syst. Char., 39, 2200019, 10.1002/ppsc.202200019 Li, 2020, Matching and adjusting energy band structures of Pd-modified sulphides (ZnS, In2S3 and CuS) and improving the photocatalytic activity of CO2 photoreduction, Nanoscale, 12, 18180, 10.1039/C9NR10394E Ghoreishian, 2021, Full-spectrum-responsive Bi2S3@CdS S-scheme heterostructure with intimated ultrathin RGO toward photocatalytic Cr(VI) reduction and H2O2 production: experimental and DFT studies, Chem. Eng. J., 419, 129530, 10.1016/j.cej.2021.129530 Hu, 2016, Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts, Catal. Sci. Technol., 6, 5884, 10.1039/C6CY00622A Conesa, 2022, Sulfide-based photocatalysts using visible light, with special focus on In2S3, SnS2 and ZnIn2S4, Catalysts, 12, 40, 10.3390/catal12010040 Hao, 2019, Metal sulfide photocatalysis: visible-light-induced organic transformations, ChemCatChem, 11, 1378, 10.1002/cctc.201801773 Wang, 2021, Photocatalytic H2 evolution coupled with furfuralcohol oxidation over Pt-modified ZnCdS solid solution, Small Methods, 5, 2100979, 10.1002/smtd.202100979 Furubayashi, 1994, Structural and magnetic studies of metal-insulator transition in thiospinel CuIr2S4, J. Phys. Soc. Jpn., 63, 3333, 10.1143/JPSJ.63.3333 Lee, 2003, Optical absorption of Co2+ in AgIn5S8 and CuIn5S8 spinel crystals, Jpn. J. Appl. Phys., 42, 3339 Shen, 2012, Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4 : a case study of alkaline-earth metal doping, J. Phys. Chem. Solid., 73, 79, 10.1016/j.jpcs.2011.09.027 Kale, 2006, CdIn2S4 nanotubes and “marigold” nanostructures: a visible-light photocatalyst, Adv. Funct. Mater., 16, 1349, 10.1002/adfm.200500525 Zhang, 2022, Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer, Chem. Eng. J., 428, 131218, 10.1016/j.cej.2021.131218 Wang, 2021, In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction, Small, 17, 2103447, 10.1002/smll.202103447 Li, 2019, Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers, Nat. Energy, 4, 690, 10.1038/s41560-019-0431-1 D. Prabha, · K Usharani, · S Ilangovan, · v Narasimman, · S Balamurugan, · M Suganya, · J Srivind, · V S Nagarethinam, · A R Balu, Thermal behavior and comparative study on the visible light driven photocatalytic performance of SnS2-ZnS nanocomposite against the degradation of anionic and cationic dyes, J. Mater. Sci. Mater. Electron. 29 (1234) 18708–18717. Huang, 2018, Photocatalytic performance of Ag2S/ZnO/ZnS nanocomposites with high visible light response prepared via microwave-assisted hydrothermal two-step method, Water Sci. Technol., 78, 1802, 10.2166/wst.2018.466 Xia, 2020, Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction, Sci. China Mater., 63, 552, 10.1007/s40843-019-1234-x Zhang, 2021, Fabrication of Bi-BiOCl/MgIn2S4 heterostructure with step-scheme mechanism for carbon dioxide photoreduction into methane, J. CO2 Util., 45, 101453, 10.1016/j.jcou.2021.101453 Huang, 2020, Fabrication of hierarchical Co3O4@CdIn2S4 p-n heterojunction photocatalysts for improved CO2 reduction with visible light, J. Mater. Chem. A, 8, 7177, 10.1039/D0TA01817A Banerjee, 2021, Polymer photocatalysts for solar-to-chemical energy conversion, Nat. Rev. Mater., 6, 168, 10.1038/s41578-020-00254-z Bie, 2021, Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts, EnergyChem, 3, 100051, 10.1016/j.enchem.2021.100051 Cao, 2015, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater., 27, 2150, 10.1002/adma.201500033 Li, 2021, Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction, Acta Phys. Chim. Sin., 37, 2009030 Wang, 2010, Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids, Chem. Mater., 22, 5119, 10.1021/cm1019102 Yan, 2010, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir, 26, 3894, 10.1021/la904023j Yu, 2020, Functional groups to modify g-C3N4 for improved photocatalytic activity of hydrogen evolution from water splitting, Chin. Chem. Lett., 31, 1648, 10.1016/j.cclet.2019.08.020 Zhu, 2017, Adsorption investigation of CO2 on g-C3N4 surface by DFT calculation, J. CO2 Util., 21, 327, 10.1016/j.jcou.2017.07.021 Kočí, 2020, Photocatalytic reduction of CO2 using Pt/C3N4 photocatalyts, Appl. Surf. Sci., 503, 144426, 10.1016/j.apsusc.2019.144426 Huo, 2021, Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction, J. Colloid Interface Sci., 585, 684, 10.1016/j.jcis.2020.10.048 Sun, 2021, Graphene-modulated PDI/g-C3N4 all-organic S-scheme heterojunction photocatalysts for efficient CO2 reduction under full-spectrum irradiation, J. Phys. Chem. C, 125, 23830, 10.1021/acs.jpcc.1c07726 Xia, 2018, Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2-production activity, ACS Sustain. Chem. Eng., 6, 8945, 10.1021/acssuschemeng.8b01300 Mallikarjuna, 2021, Synthesis of oxygen-doped-g-C3N4/WO3 porous structures for visible driven photocatalytic H2 production, Physica E Low Dimens. Syst. Nanostruct., 126, 114428, 10.1016/j.physe.2020.114428 Cao, 2014, G-C3N4-based photocatalysts for hydrogen generation, J. Phys. Chem. Lett., 5, 2101, 10.1021/jz500546b Zhao, 2018, Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light, Appl. Catal., B, 224, 725, 10.1016/j.apcatb.2017.11.005 Haider, 2019, Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts, Catal. Today, 335, 55, 10.1016/j.cattod.2018.11.067 Song, 2021, S-scheme bismuth vanadate and carbon nitride integrating with dual-functional bismuth nanoparticles toward co-efficiently removal formaldehyde under full spectrum light, J. Colloid Interface Sci., 588, 357, 10.1016/j.jcis.2020.12.087 Li, 2020, 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading, J. Mater. Sci. Technol., 56, 216, 10.1016/j.jmst.2020.03.038 Yanagida, 1985, Poly(p-phenylene)-catalysed photoreduction of water to hydrogen, J. Chem. Soc. Chem. Commun., 474, 10.1039/c39850000474 Lan, 2019, Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution, Appl. Catal., B, 245, 596, 10.1016/j.apcatb.2019.01.010 Sprick, 2018, Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation, J. Mater. Chem. A, 6, 11994, 10.1039/C8TA04186E Sprick, 2016, Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts, Angew. Chem. Int. Ed., 128, 1824, 10.1002/ange.201510542 Chen, 2019, Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production, Appl. Catal., B, 241, 461, 10.1016/j.apcatb.2018.09.011 Cheng, 2021, Porous organic polymers for photocatalytic carbon dioxide reduction, ChemPhotoChem, 5, 406, 10.1002/cptc.202000298 Kim, 2021, Photocatalytic production of H2O2 from water and dioxygen only under visible light using organic polymers: systematic study of the effects of heteroatoms, Appl. Catal., B, 299, 120666, 10.1016/j.apcatb.2021.120666 Shiraishi, 2019, Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion, Nat. Mater., 18, 985, 10.1038/s41563-019-0398-0 Bordiga, 2004, Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour, Chem. Commun., 2300, 10.1039/B407246D Kong, 2016, Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution, Angew. Chem. Int. Ed., 55, 6411, 10.1002/anie.201600431 Tian, 2018, Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production, J. Mater. Sci., 53, 12016, 10.1007/s10853-018-2476-0 Wang, 2020, Covalent organic framework photocatalysts: structures and applications, Chem. Soc. Rev., 49, 4135, 10.1039/D0CS00278J Zhu, 2017, Crystallization of covalent organic frameworks for gas storage applications, Molecules, 22, 1149, 10.3390/molecules22071149 Wang, 2021, A fully conjugated 3D covalent organic framework exhibiting band-like transport with ultrahigh electron mobility, Angew. Chem. Int. Ed., 60, 9321, 10.1002/anie.202100464 Low, 2017, Heterojunction photocatalysts, Adv. Mater., 29, 1601694, 10.1002/adma.201601694 Serpone, 1995, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol. Photobiol. A., 85, 247, 10.1016/1010-6030(94)03906-B Bedja, 1995, Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiC2-capped SnO2 nanocrystallites, J. Phys. Chem., 99, 9182, 10.1021/j100022a035 Serpone, 1984, Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer, J. Chem. Soc. Chem. Commun., 6, 342, 10.1039/C39840000342 Ghosh, 2021, The type-II n-n inorganic/organic nano-heterojunction of Ti3+ self-doped TiO2 nanorods and conjugated co-polymers for photoelectrochemical water splitting and photocatalytic dye degradation, Chem. Eng. J., 407, 127227, 10.1016/j.cej.2020.127227 Yu, 2014, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets, J. Am. Chem. Soc., 136, 8839, 10.1021/ja5044787 Pires, 2011, Recent developments on carbon capture and storage: an overview, Chem. Eng. Res. Des., 89, 1446, 10.1016/j.cherd.2011.01.028 Pan, 2020, Recent progress in photocatalytic hydrogen evolution, Acta Phys. Chim. Sin., 36, 1905068, 10.3866/PKU.WHXB201905068 Li, 2015, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review, Catal. Sci. Technol., 5, 1360, 10.1039/C4CY00974F Liu, 2018, Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites, Angew. Chem. Int. Ed., 57, 5379, 10.1002/anie.201800320 Tang, 2008, Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry, J. Am. Chem. Soc., 130, 13885, 10.1021/ja8034637 Jiang, 2022, S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production, J. Mater. Sci. Technol., 124, 193, 10.1016/j.jmst.2022.01.029 Gao, 2020, Industrial carbon dioxide capture and utilization: state of the art and future challenges, Chem. Soc. Rev., 49, 8584, 10.1039/D0CS00025F Janna, 2020, Effectiveness of modified CO2 injection at improving oil recovery and CO2 storage-Review and simulations, Energy Rep., 6, 1922, 10.1016/j.egyr.2020.07.008 Kant, 2012, Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies, Front. Plant Sci., 3, 162, 10.3389/fpls.2012.00162 Liu, 2022, Pd nanosheet-decorated 2D/2D g-C3N4/WO3·H2O S-scheme photocatalyst for high selective photoreduction of CO2 to CO, Inorg. Chem., 61, 4171, 10.1021/acs.inorgchem.1c04034 Wang, 2022, Photocatalytic CO2 reduction to HCOOH over core-shell Cu@Cu2O catalysts, Catal. Commun., 162, 106372, 10.1016/j.catcom.2021.106372 Lais, 2018, Semiconducting oxide photocatalysts for reduction of CO2 to methanol, Environ. Chem. Lett., 16, 183, 10.1007/s10311-017-0673-8 Albero, 2020, Photocatalytic CO2 reduction to C2+ products, ACS Catal., 10, 5734, 10.1021/acscatal.0c00478 Fu, 2020, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today, 32, 222, 10.1016/j.mattod.2019.06.009 Ali, 2012, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manag., 113, 170 Wang, 2014, Photocatalytic organic pollutants degradation in metal-organic frameworks, Energy Environ. Sci., 7, 2831, 10.1039/C4EE01299B Chen, 2020, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review, J. Clean. Prod., 268, 121725, 10.1016/j.jclepro.2020.121725 Yu, 2009, Enhancement of photocatalytic activity of Mesporous TiO2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C, 113, 6743, 10.1021/jp900136q Wang, 2018, ZnO hierarchical microsphere for enhanced photocatalytic activity, J. Alloys Compd., 741, 622, 10.1016/j.jallcom.2018.01.141 Daneshvar, 2004, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol., A, 162, 317, 10.1016/S1010-6030(03)00378-2 Kim, 2016, Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation, Mater. Res. Bull., 2016, 85, 10.1016/j.materresbull.2015.10.024 Vinodgopal, 1995, Enhanced rates of photocatalytic degradation of an azo dye using SnO<Sub>2/TiO2 coupled semiconductor thin films, Environ. Sci. Technol., 29, 841, 10.1021/es00003a037 Kavitha, 2021, Investigation on SnO2/TiO2 nanocomposites and their enhanced photocatalytic properties for the degradation of methylene blue under solar light irradiation, Bull. Mater. Sci., 44, 26, 10.1007/s12034-020-02291-4 Anwer, 2019, Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges, Nano Res., 12, 955, 10.1007/s12274-019-2287-0 Wang, 2021, Hydrogen-bond activation of N2 molecules and photocatalytic nitrogen fixation, Chem, 7, 1983, 10.1016/j.chempr.2021.07.009 Xin, 2021, Atomic-level insights into the activation of nitrogen via hydrogen-bond interaction toward nitrogen photofixation, Chem, 7, 1, 10.1016/j.chempr.2021.03.018 Wu, 2019, Effect of H2O2 bleaching treatment on the properties of finished transparent wood, Polymers, 11, 776, 10.3390/polym11050776 Wagner, 2002, Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent, Water Environ. Res., 74, 33, 10.2175/106143002X139730 Yamamoto, 2002, Sterilization by H2O2 droplets under corona discharge, J. Electrost., 56, 173, 10.1016/S0304-3886(01)00195-4 Yamada, 2015, High and robust performance of H2O2 fuel cells in the presence of scandium ion, Energy Environ. Sci., 8, 1698, 10.1039/C5EE00748H Chen, 2008, Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor-From bench scale to industrial scale, Chem. Eng. Process, 47, 787, 10.1016/j.cep.2006.12.012 Hou, 2020, Production of hydrogen peroxide by photocatalytic processes, Angew. Chem. Int. Ed., 59, 17356, 10.1002/anie.201911609 Chinta, 2004, A mechanistic study of H2O2 and H2O formation from H2 and O2 catalyzed by palladium in an aqueous medium, J. Catal., 225, 249, 10.1016/j.jcat.2004.04.014 Campos-Martin, 2006, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process, Angew. Chem. Int. Ed., 45, 6962, 10.1002/anie.200503779 Zhao, 2019, Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework, Appl. Catal., B, 250, 408, 10.1016/j.apcatb.2019.02.031 Naldoni, 2017, Hot electron collection on brookite nanorods lateral facets for plasmon-enhanced water oxidation, ACS Catal., 7, 1270, 10.1021/acscatal.6b03092 Diesen, 2014, Formation of H2O2 in TiO2 photocatalysis of oxygenated and deoxygenated aqueous systems: a probe for photocatalytically produced hydroxyl radicals, J. Phys. Chem. C, 118, 10083, 10.1021/jp500315u Gong, 2019, Research progress of photocatalytic sterilization over semiconductors, RSC Adv., 9, 19278, 10.1039/C9RA01826C Ireland, 1993, Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation, Appl. Environ. Microbiol., 59, 1668, 10.1128/aem.59.5.1668-1670.1993 Matsunaga, 1985, Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, 211, 10.1111/j.1574-6968.1985.tb00864.x Bhosale, 2021, Photocatalytic and antibacterial activities of ZnO nanoparticles synthesized by chemical method, J. Mater. Sci. Mater. Electron., 32, 20510, 10.1007/s10854-021-06563-5 Xia, 2020, Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria, Angew. Chem. Int. Ed., 59, 5218, 10.1002/anie.201916012 Bao, 2011, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection, J. Colloid Interface Sci., 360, 463, 10.1016/j.jcis.2011.05.009 Wang, 2022, The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds, Bioact. Mater, 13, 200, 10.1016/j.bioactmat.2021.10.033 Wang, 1997, Light-induced amphiphilic surfaces, Nature, 388, 431, 10.1038/41233 Kontos, 2007, Superhydrophilicity and photocatalytic property of nanocrystalline titania sol-gel films, Thin Solid Films, 515, 7370, 10.1016/j.tsf.2007.02.082 Reischauer, 2021, Emerging concepts in photocatalytic organic synthesis, iScience, 24, 102209, 10.1016/j.isci.2021.102209 Capaldo, 2019, Merging photocatalysis with electrochemistry: the dawn of a new alliance in organic synthesis, Angew. Chem. Int. Ed., 58, 17508, 10.1002/anie.201910348 Singh, 2014, Facile synthesis of Z-alkenes via uphill catalysis, J. Am. Chem. Soc., 136, 5275, 10.1021/ja5019749 Yu, 2018, Chemoselective peptide modification via photocatalytic tryptophan β-position conjugation, J. Am. Chem. Soc., 140, 6797, 10.1021/jacs.8b03973 Sato, 2013, Ligand-directed selective protein modification based on local single-electron-transfer catalysis, Angew. Chem. Int. Ed., 52, 8681, 10.1002/anie.201303831 König, 2017, Photocatalysis in organic synthesis—past, present, and future, Eur. J. Org. Chem., 2017, 1979, 10.1002/ejoc.201700420