Principles of cerebral perfusion imaging by bolus tracking

Journal of Magnetic Resonance Imaging - Tập 22 Số 6 - Trang 710-717 - 2005
Leif Østergaard1
1Department of Neuroradiology, Center for Functionally Integrative Neuroscience (CFIN), Aarhus University Hospital, Århus, Denmark

Tóm tắt

AbstractThe principles of cerebral perfusion imaging by the method of dynamic susceptibility contrast magnetic resonance imaging (DSC‐MRI) (bolus tracking) are described. The MRI signals underlying DSC‐MRI are discussed. Tracer kinetics procedures are defined to calculate images of cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT). Two general categories of numerical procedures are reviewed for deriving CBF from the residue function. Procedures that involve deconvolution, such as Fourier deconvolution or singular value decomposition (SVD), are classified as model‐independent methods because they do not require a model of the microvascular hemodynamics. Those methods in principle also yield a measure of the tissue impulse response function and the residue function, from which microvascular hemodynamics can be characterized. The second category of methods is the model‐dependent methods, which use models of tracer transport and retention in the microvasculature. These methods do not yield independent measures of the residue function and may introduce bias when the physiology does not follow the model. Statistical methods are sometimes used, which involve treating the residue function as a deconvolution kernel and optimizing (fitting) the kernel from the experimental data using procedures such as maximum likelihood. Finally, other hemodynamic indices that can be measured from DSC‐MRI data are described. J. Magn. Reson. Imaging 2005. © 2005 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1097/00004647-199907000-00001

10.1002/mrm.1910060205

10.1002/mrm.1910170206

10.1002/mrm.1910340412

10.1002/mrm.1910310605

10.1097/00004647-199804000-00011

10.1002/(SICI)1522-2586(199902)9:2<342::AID-JMRI29>3.0.CO;2-B

10.1103/PhysRevLett.81.5696

10.1002/(SICI)1522-2594(199903)41:3<499::AID-MRM12>3.0.CO;2-O

10.1002/mrm.1307

10.1002/mrm.1910140211

10.1002/mrm.1910220227

10.1002/mrm.1910190216

10.1126/science.1948051

10.1113/jphysiol.1893.sp000462

10.1152/jappl.1954.6.12.731

10.1161/01.RES.16.4.309

10.1161/01.RES.10.3.393

10.1161/01.RES.14.6.502

10.1002/mrm.10126

10.1148/radiology.193.3.7972800

10.1088/0031-9155/39/11/004

10.1007/BF02442816

10.1016/0020-7101(83)90024-7

10.1002/(SICI)1522-2594(199907)42:1<167::AID-MRM22>3.0.CO;2-Q

10.1002/mrm.1910360510

AlsopD SchlaugG.The equivalence of SVD and Fourier deconvolution for dynamic susceptibility contrast analysis. In: Proceedings of the 9th Annual Meeting of ISMRM Glasgow Scotland 2001. p1581.

10.1002/1522-2586(200009)12:3<400::AID-JMRI5>3.0.CO;2-C

10.1002/(SICI)1522-2594(200005)43:5<691::AID-MRM11>3.0.CO;2-B

10.1002/mrm.10610

10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M

10.1002/mrm.10522

10.1006/jtbi.1994.1164

10.1097/00004647-199906000-00013

10.1152/ajpcell.1993.265.2.C305

10.1007/BF02660885

10.1002/(SICI)1522-2586(199908)10:2<109::AID-JMRI1>3.0.CO;2-#

10.1002/(SICI)1522-2594(199902)41:2<343::AID-MRM19>3.0.CO;2-T

10.1002/mrm.10213

10.1038/jcbfm.1984.90

10.1002/mrm.1910290420

10.1097/00004647-199810000-00011

10.1097/00004647-199809000-00002

AlsopDC WedmidA SchlaugG.Defining a local input function for perfusion quantification with bolus contrast MRI. In: Proceedings of the 10th Annual Meeting of ISMRM Honolulu 2002. p659.

10.1111/j.1748-1716.1963.tb02652.x

10.1152/ajplegacy.1959.197.6.1211

10.1161/01.STR.0000072998.70087.E9

10.1161/hs0102.101893