Principles of adjustable autonomy: a framework for resilient human–machine cooperation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amalberti R (2006) Optimum system safety and optimum system resilience: agonistic or antagonistic concepts? In: Hollnagel E et al (eds) Resilience engineering: concepts and precepts. Ashgate, UK, pp 253–271
Benford S, Fahlén L (1993) A spatial model of interaction in large virtual environments. In: Proceedings of the third European conference on computer supported cooperative work (ECSCW’93), Milan, pp 109–124
Bradshaw JM, Feltovitch PJ, Jung H, Kulkarni S, Taysom W, Uszok A (2004) Dimensions of adjustable autonomy and mixed-initiative interaction. In: Nickles M et al (eds) AUTONOMY LNAI 2969. Springer, Berlin, pp 17–39
Dorais GA, Bonasso RP, Kortenkamp D, Pell B, Schreckenghost D (1998) Adjustable autonomy for human-centered autonomous systems on Mars. In: Proceedings of the 1st international conference of the mars society, Boulder, CO
Gaver WW (1991) Technology affordances. In: Proceedings of CHI 91, New Orleans (LA). ACM, New York, pp 79–84
Gibson JJ (1986) The ecological approach to visual perception. Lawrence Erlbaum Associates, Hillsdale Originally published in 1979
Goodrich MA, Olsen DR, Crandall JW, Palmer TJ (2001) Experiments in adjustable autonomy. In: Proceedings of IJCAI workshop autonomy, delegation and control: interacting with intelligent agents
Hollnagel E (1999) Accidents and barriers. In: Proceedings of the 7th European conference on cognitive science approaches to process control, Villeneuve d’Ascq, France, pp 175–180
Hollnagel E (2006) Achieving system safety by resilience engineering. In the 1st institute of engineering and technology international conference on systems safety
Hollnagel E, Woods DD (2006) Epilogue: resilience engineering precepts. In: Hollnagel E et al (eds) Resilience engineering: concepts and precepts. Ashgate, UK, pp 347–358
Inagaki T (2003) Adaptive automation: sharing and trading of control. In: Hollnagel E (ed) Handbook of cognitive task design. Lawrence Erlbaum Associates, Mahwah, pp 147–169
Ludwig D, Walker B, Holling CS (1997) Sustainability, stability and resilience. Conserv Ecol 1(1):7. Available from the internet. http://www.consecol.org/vol1/iss1/art7/
Parasuraman R, Sheridan TB, Wickens CD (2000) A model for types and levels of human interaction with automation. IEEE Trans Syst Man Cybern—Part A Syst Hum 30(3):286–297
Sahin E, Cakmak M, Dogar MR, Ugur E, Uçoluk G (2006). To afford or not to afford: a new formalization of affordances towards affordance-based robot control. Technical report: Middle East Technical University, Ankara, METU-CENG-TR-2006-02
Schmidt K (1991) Cooperative work: a conceptual framework. In: Rasmussen J et al (eds) Distributed decision making: cognitive models for cooperative work. Wiley, USA, pp 75–110
Sheridan TB (1992) Telerobotics, automation and human supervisory control. MIT Press, Cambridge
Stoffregen TA (2003) Affordances as properties of the animal environment system. Ecol Psychol 15(2):115–134
Westrum R (2006) A typology of resilience situations. In: Hollnagel E (ed) Resilience engineering: concepts and precepts. Ashgate, UK, pp 55–65
Wreathall J (2006) Properties of resilient organizations: an initial view. In: Hollnagel E (ed) Resilience engineering: concepts and precepts. Ashgate, UK, pp 275–285
Zieba S, Jouglet D, Polet P, Vanderhaegen F (2007) Resilience and affordances: perspectives for human,-robot cooperation?, EAM’07-26th European annual conference on human decision-making and manual control, Copenhagen, Denmark
Zieba S, Polet P, Vanderhaegen F, Enjalbert S (2008). Autonomie ajustable et résilience pour une coopération Homme–Robot. Conférence internationale francophone d’automatique, Bucharest, Romania, September