Principle and performance of BDSBAS and PPP-B2b of BDS-3
Tóm tắt
Within the framework of differential augmentation, this paper introduces the basic technical framework and performance of the BeiDou Global Navigation Satellite System (BDS-3) Satellite-Based Augmentation System (BDSBAS), including orbit products, satellite clock offset products, ionosphere and its integrity performance. The basic principle of BDS-3 Precise Point Positioning (PPP-B2b) is expounded, the similarities and differences between the PPP service provided by BDS-3 and International Global Navigation Satellite System (GNSS) Service (IGS) are discussed, and the limitations of PPP-B2b are analyzed. Since both the BDSBAS and PPP-B2b utilize a ground monitoring station network to determine the satellite orbits and clock offset corrections, and broadcast differential corrections through the three Geostationary Orbit (GEO) satellites of BDS-3, the feasibility of the co-construction of BDSBAS and PPP-B2b is analyzed, strategies for the infrastructure sharing and correction broadcasting are presented, and the influences of BDSBAS correction broadcasting strategy adjustment are evaluated. In addition, it assesses the possibility of broadcasting differential corrections through the Inclined Geosynchronous Orbit (IGSO) satellites of BDS-3, and the feasibility of augmenting satellite navigation with Low Earth Orbit (LEO) satellites.
Tài liệu tham khảo
Bao, S., Li, R., Liu, Y., & Shao, B. (2019). Ionospheric anomaly detection to support the BDSBAS. IEEE Access, 99, 1691–1704. https://doi.org/10.1109/ACCESS.2019.2962233
Chen, J., Wang, A., Zhang, Y., et al. (2020). BDS satellite-based augmentation service correction parameters and performance assessment. Remote Sensing, 12(5), 766.
CSNO. (2020). BeiDou navigation satellite system signal in space interface control document precise point positioning service signal PPP-B2b (Version 1.0). http://www.beidou.gov.cn/xt/gfxz/202008/P020200803362062482940.pdf
Gao, Y., & Shen, X. (2002). A new method for carrier-phase-based precise point positioning. Navigation, 49(2), 109–116.
Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389–399. https://doi.org/10.1007/s00190-007-0187-4
Glaner, M., & Weber, R. (2021). PPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centers. GPS Solutions. https://doi.org/10.1007/s10291-021-01140-z
Guo, F., Zhang, X., & Wang, J. (2015). Timing group delay and differential code bias corrections for BeiDou positioning. Journal of Geodesy, 89(5), 427–445. https://doi.org/10.1007/s00190-015-0788-2
Héroux, P., & Kouba, J. (1995). GPS precise point positioning with a difference. Paper presented at geomatics’95. Canada, Ottawa, 13–15.
Hu, J., Zhang, X., Li, P., Ma, F., & Pan, L. (2019). Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University. GPS Solutions. https://doi.org/10.1007/s10291-019-0929-9
Jin, B., Chen, S., Li, D., Wang, Y., & Takka, E. (2021). Performance analysis of SBAS ephemeris corrections and integrity algorithms in China region. Satellite Navigation. https://doi.org/10.1186/s43020-021-00045-z
Li, B., Li, Z., Zhang, Z., & Tan, Y. (2017). ERTK: Extra-wide-lane RTK of triple-frequency GNSS signals. Jouurnal of Geodesy, 91(9), 1031–1047. https://doi.org/10.1007/s00190-017-1006-1
Li, J., Yang, Y., He, H., & Guo, H. (2020). Benefits of BDS-3 B1C/B1I/B2a triple-frequency signals on precise positioning and ambiguity resolution. GPS Solution, 26, 29. https://doi.org/10.1007/s10291-020-01016-8
Li, M., Xu, T., Guan, M., Gao, F., & Jiang, N. (2022). LEO-constellation-augmented multi-GNSS real-time PPP for rapid re-convergence in harsh environments. GPS Solution. https://doi.org/10.1007/s10291-021-01217-91-021-01217-9
Li, P., Zhang, X., & Guo, F. (2017). Ambiguity resolved precise point positioning with GPS and BeiDou. Journal of Geodesy, 91(1), 25–40.
Li, X., Ge, M., Zhang, H., & Wickert, J. (2013). A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. Journal of Geodesy, 87(5), 405–416.
Li, X., Li, X., Yuan, Y., Zhang, K., Zhang, X., & Wickert, J. (2018). Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS. Galileo. Journal of Geodesy, 92(6), 579–608.
Liu, C., Gao, W., Liu, T., Wang, D., Yao, Z., Gao, Y., Nie, X., Wang, W., Li, D., Zhang, W., Wang, D., & Rao, Y. (2020). Design and implementation of a BDS precise point positioning service. Navigation, 67(4), 875–891. https://doi.org/10.1002/navi.392
Liu, C., Gao, W., Shao, B., Lu, J., Wang, W., Chen, Y., Su, C., Xiong, S., & Ding, Q. (2021). Development of BeiDou satellite-based augmentation system. Navigation. https://doi.org/10.1002/navi.422
Ma, Y., Tang, C., Hu, X., Chang, Z., Pu, J., Nan, X., Cao, Y., & Wang, N. (2021). Optimalization of GIVE algorithm for grid-based single shell ionospheric model over Chinese region based on residual statistics. Acta Geodaetica Et Cartographica Sinica, 50(3), 304–314.
Montenbruck, O., Steigenberger, P., & Hauschild, A. (2020). Comparing the 'Big 4' —A user's view on GNSS performance. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) (pp. 407–418). IEEE. https://doi.org/10.1109/PLANS46316.2020.9110208
Shao, B., Ding, Q., & Wu, X. (2020). Estimation method of SBAS dual-frequency range error integrity parameter. Satellite Navigation. https://doi.org/10.1186/s43020-020-00011-1
Xu, Y., Yang, Y., & Li, J. (2021). Performance evaluation of BDS-3 PPP-B2b precise point positioning service. GPS Solution., 25(4), 1–14.
Yang, Y. (2009). Chinese geodetic coordinate system 2000. Chinese Science Bulletin, 54, 2714–2721.
Yang, Y., Gao, W., Guo, S., Mao, Y., & Yang, Y. (2019). Introduction to BeiDou-3 navigation satellite system. Navigation, 66(1), 7–18.
Yang, Y., Liu, L., Li, J., Yang, Y., Zhang, T., Mao, Y., Sun, B., & Ren, X. (2021). Featured services and performance of BDS-3. Science Bulletin, 66(20), 2135–2143. https://doi.org/10.1016/j.scib.2021.06.013
Yang, Y., Mao, Y., & Sun, B. (2020). Basic performance and future developments of BeiDou global navigation satellite system. Satellite Navigation, 1(1), 1–8. https://doi.org/10.1186/s43020-019-0006-0
Yang, Y., Xu, T., & Song, L. (2005). Robust estimation of variance components with application in Global Positioning System network adjustment. Journal of Surveying Engineering, 131(4), 107–112.
Yang, Y., Xu, Y., Li, J., & Yang, C. (2018). Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system. Science China Earth Sciences, 61(5), 614–624.
Zumberge, J. F., Heftin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(B3), 5005–5017.