Các Tham Số Nguyên Tắc và Tác Động Môi Trường Ảnh Hưởng đến Hiệu Suất của Tuabin Gió: Một Tóm Tắt

Arabian Journal for Science and Engineering - Tập 47 - Trang 7891-7909 - 2021
Mohamed Bashir Ali Bashir1,2
1Department of Mechanical Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
2Department of Mechanical Engineering, Faculty of Engineering, Eldaein University, Eldaein, Sudan

Tóm tắt

Thị phần sản xuất điện từ năng lượng gió đang dần gia tăng trong thị trường năng lượng toàn cầu. Năng lượng gió có thể giảm sự phụ thuộc vào nhiên liệu hóa thạch, từ đó góp phần làm giảm sự nóng lên toàn cầu. Bài báo này thảo luận và xem xét các tham số nguyên tắc cơ bản ảnh hưởng đến hiệu suất của các tuabin gió. Một cái nhìn tổng quan trình bày giới thiệu và bối cảnh của việc tiêu thụ năng lượng, theo thứ tự phát triển của các tuabin gió, bao gồm các mô hình toán học, các loại tuabin gió đã được thảo luận một cách nghiêm túc. Hơn nữa, bài báo cũng tập trung vào các vật liệu thường được sử dụng trong sản xuất tuabin gió và quy trình tái chế chúng. Quy mô của các phương pháp tái chế cho sợi thủy tinh và thermoplastic được trình bày trong phần tương ứng. Nhiều tham số làm giảm chức năng của tuabin gió được giải thích chi tiết. Bài đánh giá này cũng thảo luận về nhiều tác động môi trường của tuabin gió. Các nghiên cứu nghiên cứu tương lai được đề xuất trong phần kết luận.

Từ khóa


Tài liệu tham khảo

Duc, L.N.: A critical review on potential and current status of wind energy in Vietnam. Renew. Sustain Energy Rev. 43, 440–448 (2015). https://doi.org/10.1016/j.rser.2014.11.060 Lombardi, L., Mendecka, B., Carnevale, E., Stanek, W., Mendecka, B., Santoni, G., et al.: Environmental impacts of electricity production of micro wind turbines with vertical axis. In: ECOS 2016 Proceedings of the 29th International Conference on Efficient Cost, Optimisation, Simulation in Environment Impact Energy System 128:553–64 (2018) Ahmad, T.; Zhang, D.: A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep. 6, 1973–1991 (2020). https://doi.org/10.1016/j.egyr.2020.07.020 Chong, W.T.; Poh, S.C.; Fazlizan, A.; Yip, S.Y.; Chang, C.K.; Hew, W.P.: Early development of an energy recovery wind turbine generator for exhaust air system. Appl. Energy 112, 568–575 (2013). https://doi.org/10.1016/j.apenergy.2013.01.042 Yaniktepe, B.; Savrun, M.M.; Koroglu, T.: Current status of wind energy and wind energy policy in Turkey. Energy Conv. Manag. 72, 103–110 (2013). https://doi.org/10.1016/j.enconman.2012.08.028 Al, B.C.; Klumpner, C.; Hann, D.B.: Effect of rain on vertical axis wind turbines. Renew. Energy Power Qual. J. 1, 1263–1268 (2011). https://doi.org/10.24084/repqj09.618 Hernández-Escobedo, Q.; Saldaña-Flores, R.; Rodríguez-García, E.R.; Manzano-Agugliaro, F.: Wind energy resource in Northern Mexico. Renew. Sustain Energy Rev. 32, 890–914 (2014) Tavner, P.; Edwards, C.; Brinkman, A.; Spinato, F.: Influence of wind speed on wind turbine reliability. Wind Eng. 30, 55–72 (2006). https://doi.org/10.1260/030952406777641441 Amirzadeh, B.; Louhghalam, A.; Raessi, M.; Tootkaboni, M.: A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: stochastic rain texture model and drop impact simulations. J. Wind Eng. Ind. Aerodyn. 163, 33–43 (2017). https://doi.org/10.1016/j.jweia.2016.12.006 Cao, Y.; Wu, Z.; Xu, Z.: Effects of rainfall on aircraft aerodynamics. Prog. Aerosp. Sci. 71, 85–127 (2014). https://doi.org/10.1016/j.paerosci.2014.07.003 Moné, C., Smith, A., Maples, B., Hand, M.: 2013 cost of wind energy review. Natl. Renew. Energy Lab. (NREL) (2015) Anshelm, J.; Simon, H.: Power production and environmental opinions: environmentally motivated resistance to wind power in Sweden. Renew. Sustain. Energy Rev. 57, 1545–1555 (2016). https://doi.org/10.1016/j.rser.2015.12.211 Gupta, N.: A review on the inclusion of wind generation in power system studies. Renew. Sustain Energy Rev. 59, 530–543 (2016). https://doi.org/10.1016/j.rser.2016.01.009 Chong, C.H.; Rigit, A.R.H.; Ali, I.: Wind turbine modelling and simulation using Matlab/SIMULINK. IOP Conf. Ser. Mater. Sci. Eng. 1101, 012034 (2021). https://doi.org/10.1088/1757-899x/1101/1/012034 Siddique, S.; Wazir, R.; Siddique, S.: A review of the wind power developments in Pakistan. Renew. Sustain. Energy Rev. 57, 351–361 (2016). https://doi.org/10.1016/j.rser.2015.12.050 Papież, M.; Śmiech, S.; Frodyma, K.: Factors affecting the efficiency of wind power in the European Union countries. Energy Policy 132, 965–977 (2019) Dalili, N.; Edrisy, A.; Carriveau, R.: A review of surface engineering issues critical to wind turbine performance. Renew. Sustain. Energy Rev. 13, 428–438 (2009) Ribrant, J., Bertling, L.: Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. In: Proceedings of the 2007 IEEE power Engineering Society of General Meeting, p. 1–8 (2007) Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K.: Darrieus vertical axis wind turbine for power generation I: assessment of Darrieus VAWT configurations. Renew. Energy 75, 50–67 (2015) Li, H.; Chen, Z.: Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2, 123–138 (2008) Hand, B.; Kelly, G.; Cashman, A.: Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: a comprehensive review. Renew. Sustain. Energy Rev. 139, 110699 (2021) Sutherland, H.J.; Berg, D.E.; Ashwill, T.D.: A retrospective of VAWT technology. Sandia Natl. Lab. 2012, 1–64 (2012) Paquette, J.A., Barone, M.F.: Innovative offshore vertical-axis wind turbine rotor project (2012) Razykov, T.M.; Ferekides, C.S.; Morel, D.; Stefanakos, E.; Ullal, H.S.; Upadhyaya, H.M.: Solar photovoltaic electricity: current status and future prospects. Sol. Energy 85, 1580–1608 (2011). https://doi.org/10.1016/j.solener.2010.12.002 Sahaym, U.; Norton, M.G.: Advances in the application of nanotechnology in enabling a “hydrogen economy.” J. Mater. Sci. 43, 5395–5429 (2008). https://doi.org/10.1007/s10853-008-2749-0 Li, Y.; Tagawa, K.; Feng, F.; Li, Q.; He, Q.: A wind tunnel experimental study of icing on wind turbine blade airfoil. Energy Convers. Manag. 85, 591–595 (2014). https://doi.org/10.1016/j.enconman.2014.05.026 Liu, J.; Lin, H.; Zhang, J.: Review on the technical perspectives and commercial viability of vertical axis wind turbines. Ocean Eng. 182, 608–626 (2019). https://doi.org/10.1016/j.oceaneng.2019.04.086 Jolin, N.; Bolduc, D.; Swytink-Binnema, N.; Rosso, G.; Godreau, C.: Wind turbine blade ice accretion: A correlation with nacelle ice accretion. Cold Reg. Sci. Technol. 157, 235–241 (2019). https://doi.org/10.1016/j.coldregions.2018.10.009 Roser, M.: Energy n.d. (2021). https://ourworldindata.org/energy. Kumar, K.V.; Safiulla, M.; Ahmed, A.N.K.: An experimental evaluation of fiber reinforced polypropylene thermoplastics for aerospace applications. J. Mech. Eng. 43, 92–97 (2014). https://doi.org/10.3329/jme.v43i2.17832 Akwa, J.V., Alves Da Silva Júnior, G., Petry, A.P.: Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renew. Energy 38:141–149 (2012). doi:https://doi.org/10.1016/j.renene.2011.07.013. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R.: The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 24, 38–50 (2019) Chen, J.; Wang, F.; Stelson, K.A.: A mathematical approach to minimizing the cost of energy for large utility wind turbines. Appl. Energy 228, 1413–1422 (2018). https://doi.org/10.1016/j.apenergy.2018.06.150 IRENA I.: Future of wind: deployment, investment, technology, grid integration and socio-economic aspects (2019) Wu, Z.; Cao, Y.; Nie, S.; Yang, Y.: Effects of rain on vertical axis wind turbine performance. J. Wind Eng. Ind. Aerodyn. 170, 128–140 (2017). https://doi.org/10.1016/j.jweia.2017.08.010 Menet, J.-L., Bourabaa, N.: Increase the savonius rotor efficiency via a parametric investigation. In: National Scheme of Engineering EComputer AutoAUTO Mechnical and Electronics Energy Valuation, London, UK, p. 11 (2003) Ong, C., Tsai, S.W.: The use of carbon fibers in wind turbine blade design: the use of carbon fibers in wind turbine blade design: a. Sandia National Labs., Albuquerque, NM (US); Sandia National Labs (2000) Modi, V.J.; Roth, N.J.; Fernando, M.S.U.K.: Optimum-configuration studies and prototype design of a wind-energy-operated irrigation system. J. Wind Eng. Ind. Aerodyn. 16, 85–96 (1984). https://doi.org/10.1016/0167-6105(84)90050-3 Cooperman, A.; Eberle, A.; Lantz, E.: Wind turbine blade material in the United States: quantities, costs, and end-of-life options. Resour. Conserv. Recycl. 168, 105439 (2021). https://doi.org/10.1016/j.resconrec.2021.105439 GWEC: Global Wind Report (2014) Gielen, D., Gorini, R., Wagner, N., Leme, R., Gutierrez, L., Prakash, G., et al.: Global energy transformation: a roadmap to 2050 (2019) Kamoji, M.; Kedare, S.; Prabhu, S.V.: Experimental investigations on two and three stage modified savonius rotor. Wind Eng. 35, 483–510 (2011). https://doi.org/10.1260/0309-524X.35.4.483 Bel Mabrouk, I.; El Hami, A.: Effect of number of blades on the dynamic behavior of a Darrieus turbine geared transmission system. Mech. Syst. Signal Process. 121, 562–578 (2019). https://doi.org/10.1016/j.ymssp.2018.11.048 Sheldahl, R.E.; Blackwell, B.F.; Feltz, L.V.: Wind tunnel performance data for two- and three-bucket savonius rotors. J. Energy 2, 160–164 (1978). https://doi.org/10.2514/3.47966 Yirtici, O.; Tuncer, I.H.; Ozgen, S.: Ice accretion prediction on wind turbines and consequent power losses. J. Phys. Conf. Ser. 753, 22022 (2016). https://doi.org/10.1088/1742-6596/753/2/022022 Xiaoni, W.; Yu, H.; Li, Y.; Wu, X.; Hu, Y.; Li, Y., et al.: Foundations of offshore wind turbines: a review. Renew. Sustain Energy Rev. 104, 379–393 (2019). https://doi.org/10.1016/j.rser.2019.01.012 Salih, S.M.; Taha, M.Q.; Alawsaj, M.K.: Performance analysis of wind turbine systems under different parameters effect performance analysis of wind turbine systems under different parameters effect view project international journal of energy and environment performance analysis of wind turbine. Int. J. Energy Environ. 2012, 2076–2909 (2012) Agha, A.; Chaudhry, H.N.; Wang, F.: Diffuser Augmented Wind Turbine (DAWT) technologies: a review. Int. J. Renew. Energy Res. 8, 1369–1385 (2018) Mishnaevsky, L.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B.F.: Materials for wind turbine blades: an overview. Materials (Basel) (2017). https://doi.org/10.3390/ma10111285 Zemamou, M.; Aggour, M.; Toumi, A.: Review of savonius wind turbine design and performance. Energy Proc. 141, 383–388 (2017). https://doi.org/10.1016/j.egypro.2017.11.047 Al-Behadili, S.H.; El-Osta, W.B.: Life cycle assessment of Dernah (Libya) wind farm. Renew. Energy 83, 1227–1233 (2015). https://doi.org/10.1016/j.renene.2015.05.041 Li, G.; Zhi, J.: Analysis of wind power characteristics Large-scale wind power grid integration, p. 19–51. Elsevier, Amsterdam (2016) Timilsina, G.R.; Cornelis van Kooten, G.; Narbel, P.A.: Global wind power development: economics and policies. Energy Policy 61, 642–652 (2013). https://doi.org/10.1016/j.enpol.2013.06.062 Shawon, M.J.; El Chaar, L.; Lamont, L.A.: Overview of wind energy and its cost in the Middle East. Sustain. Energy Technol. Assessm. (2013). https://doi.org/10.1016/j.seta.2013.01.002 Qasemi, K.; Azadani, L.N.: Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector. Energy 202, 117745 (2020). https://doi.org/10.1016/j.energy.2020.117745 Zahedi, A.: Developing a linear model for estimating the capacity factor of wind turbines. AUPEC 2011, 1–5 (2011) Sedaghat, A.; Alkhatib, F.; Eilaghi, A.; Sabati, M.; Borvayeh, L.; Mostafaeipour, A.: A new strategy for wind turbine selection using optimization based on rated wind speed. Energy Proced. 160, 582–589 (2019). https://doi.org/10.1016/j.egypro.2019.02.209 Sedaghat, A.; Hassanzadeh, A.; Jamali, J.; Mostafaeipour, A.; Chen, W.-H.: Determination of rated wind speed for maximum annual energy production of variable speed wind turbines. Appl. Energy 205, 781–789 (2017) Chehouri, A.; Younes, R.; Ilinca, A.; Perron, J.: Review of performance optimization techniques applied to wind turbines. Appl. Energy 142, 361–388 (2015) Fingersh, L., Hand, M., Laxson, A.: Wind turbine design cost and scaling model. 29 (2006) Dupré, A.; Drobinski, P.; Badosa, J.; Briard, C.; Plougonven, R.: Air density induced error on wind energy estimation.(2019). https://doi.org/10.5194/angeo-2019-88 Wagner, R.; Antoniou, I.; Pedersen, S.M.; Courtney, M.S.; Jørgensen, H.E.: The influence of the wind speed profile on wind turbine performance measurements. Wind Energy 12, 348–362 (2009). https://doi.org/10.1002/we.297 Tabassum, A.; Premalatha, M.; Abbasi, T.; Abbasi, S.A.: Wind energy: increasing deployment, rising environmental concerns. Renew. Sustain. Energy Rev. 31, 270–288 (2014). https://doi.org/10.1016/j.rser.2013.11.019 Wang, Y.; Tong, H.; Sima, H.; Wang, J.; Sun, J.; Huang, D.: Experimental study on aerodynamic performance of deformable blade for vertical axis wind turbine. Energy 181, 187–201 (2019). https://doi.org/10.1016/j.energy.2019.03.181 Rezaeiha, A.; Montazeri, H.; Blocken, B.: Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters. Energy Convers. Manag. 169, 45–77 (2018). https://doi.org/10.1016/j.enconman.2018.05.042 Abkar, M.; Dabiri, J.O.: Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study. J. Turbul. 18, 373–389 (2017). https://doi.org/10.1080/14685248.2017.1284327 Araya, D.B.; Dabiri, J.O.: Vertical axis wind turbine in a falling soap film. Phys. Fluids 27, 91108 (2015). https://doi.org/10.1063/1.4930912 Brownstein, I.D.; Kinzel, M.; Dabiri, J.O.: Performance enhancement of downstream vertical-axis wind turbines. J. Renew. Sustain Energy 8, 53306 (2016). https://doi.org/10.1063/1.4964311 Rezaeiha, A.; Kalkman, I.; Blocken, B.; Rezaeiha, A.; Kalkman, I.: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197, 132–150 (2017). https://doi.org/10.1016/j.apenergy.2017.03.128 Rezaeian, M.; Montazeri, H.; Loonen, R.C.G.M.: Science foresight using life-cycle analysis, text mining and clustering: a case study on natural ventilation. Technol. Forecast Soc. Change 118, 270–280 (2017). https://doi.org/10.1016/j.techfore.2017.02.027 Chen, W.H.; Chen, C.Y.; Huang, C.Y.; Hwang, C.J.: Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Appl. Energy 185, 223–232 (2017). https://doi.org/10.1016/j.apenergy.2016.10.076 Molina, A.C.; Bartoli, G.; De Troyer, T.: Wind tunnel testing of small vertical-axis wind turbines in turbulent flows. Proc. Eng. 199, 3176–3181 (2017). https://doi.org/10.1016/j.proeng.2017.09.518 Carbó Molina, A.; Bartoli, G.; De Troyer, T.: Generation of uniform turbulence profiles in the wind tunnel for urban VAWT testing. Green Energy Technol. 10, 27–43 (2018). https://doi.org/10.1007/978-3-319-74944-0_3 Holttinen, H.; Tuhkanen, S.: The effect of wind power on CO2 abatement in the Nordic Countries. Energy Policy 32, 1639–1652 (2004). https://doi.org/10.1016/S0301-4215(03)00158-7 Ashwindran, S.N.; Azizuddin, A.A.; Oumer, A.N.; Sulaiman, M.Z.: A review on the prospect of wind power as an alternative source of energy in Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 1078, 12017 (2021) Azorin-Molina, C.; Asin, J.; McVicar, T.R.; Minola, L.; Lopez-Moreno, J.I.; Vicente-Serrano, S.M., et al.: Evaluating anemometer drift: a statistical approach to correct biases in wind speed measurement. Atmos. Res. 203, 175–188 (2018) Cindric, L.: Autonomus hybrid system for household energy supply on island of Rab, Croatia. Universitat Politècnica de Catalunya (2017) Rashad, A.; Kamel, S.; Jurado, F.: The basic principles of wind farms. Distrib. Gener. Syst. 2017, 21–67 (2017) Schubel, P.J.; Crossley, R.J.: Wind turbine blade design. Energies 5, 3425–3449 (2012) Islam, S.M., Nayar, C.V., Abu-Siada, A., Hasan, M.M.: Power electronics for renewable energy sources. In: Power Electronics Handbook. Elsevier, Amsterdam, p. 783–827 (2018) Yue, W.; Xue, Y.; Liu, Y.: High humidity aerodynamic effects study on offshore wind turbine airfoil/blade performance through CFD analysis. Int. J. Rotat. Mach. (2017). https://doi.org/10.1155/2017/7570519 Oukassou, K.; El Mouhsine, S.; El Hajjaji, A.; Kharbouch, B.: Comparison of the power, lift and drag coefficients of wind turbine blade from aerodynamics characteristics of Naca0012 and Naca2412. Proc. Manuf. 32, 983–990 (2019). https://doi.org/10.1016/j.promfg.2019.02.312 Thomas, L.; Ramachandra, M.: Advanced materials for wind turbine blade: a review. Mater. Today Proc. 5, 2635–2640 (2018). https://doi.org/10.1016/j.matpr.2018.01.043 Harper, N.: Detecting ice on wind turbine blades. Wind Power Eng. Dev. 2011, 1–2 (2011) Beckman, I.P.; Lozano, C.; Freeman, E.; Riveros, G.: Fiber selection for reinforced additive manufacturing. Polym. (Basel) 13, 2231 (2021) Chingulpitak, S.; Wongwises, S.: Critical review of the current status of wind energy in Thailand. Renew. Sustain. Energy Rev. 31, 312–318 (2014). https://doi.org/10.1016/j.rser.2013.11.038 Westphal, T., Bortolotti, P., Nijssen, R.P.L.: Carbon glass hybrid materials for wind turbine rotor blades. TU Delft (2013) Gopalraj, S.K.; Kärki, T.: A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2, 1–21 (2020) Mishnaevsky, L.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B.F., et al.: Materials for wind turbine blades: an overview. Mater. (Basel) (2017). https://doi.org/10.3390/ma10111285 Wiser, R.H., Bolinger, M., Hoen, B., Millstein, D., Rand, J., Barbose, G.L., et al.: Land-based wind market report: 2021 Edition (2021) BizVibe: Global wind turbine industry factsheet 2020: top 10 largest wind turbine manufacturers (2020). https://blog.bizvibe.com/blog/energy-and-fuels/top-10-wind-turbine-manufacturers-world. Ingram, E.: Vestas tops BloombergNEF’s list of top wind turbine manufacturers by installations. Renew Energy World (2020). https://www.renewableenergyworld.com/wind-power/vestas-tops-bloombergnefs-list-of-top-wind-turbine-manufacturers-by-installations/. Accessed on 10 Oct 2021 Honrubia, A., Vigueras-Rodríguez, A., Ǵomez Ĺazaro, E., Rodŕiguez-Śanchez, D.: The influence of wind shear in wind turbine power estimation. Eur. Wind Energy Conf. Exhib. 2010, EWEC 2010 6:4130–4139 (2010) Pourrajabian, A.; Mirzaei, M.; Ebrahimi, R.; Wood, D.: Effect of air density on the performance of a small wind turbine blade: a case study in Iran. J. Wind Eng. Ind. Aerodyn. 126, 1–10 (2014) Brusca, S.; Lanzafame, R.; Messina, M.: Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine’s performance. Int. J. Energy Environ. Eng. 5, 333–340 (2014) Lilley GM, Rainbird WJ. A preliminary report on the design and performance of a ducted windmill. Rep No 102:73 (1956) Sareen, A.; Sapre, C.A.; Selig, M.S.: Effects of leading edge erosion on wind turbine blade performance. Wind Energy 17, 1531–1542 (2014). https://doi.org/10.1002/we.1649 Roy, S.; Saha, U.K.: Computational study to assess the influence of overlap ratio on static torque characteristics of a vertical axis wind turbine. Proced. Eng. 51, 694–702 (2013) Madi, E.; Pope, K.; Huang, W.; Iqbal, T.: A review of integrating ice detection and mitigation for wind turbine blades. Renew. Sustain. Energy Rev. 103, 269–281 (2019). https://doi.org/10.1016/j.rser.2018.12.019 Pinar Pérez, J.M.; García Márquez, F.P.; Ruiz, H.D.: Economic viability analysis for icing blades detection in wind turbines. J. Clean. Prod. 135, 1150–1160 (2016). https://doi.org/10.1016/j.jclepro.2016.07.026 Rajpar, A.H., Ali, I., Eladwi, A.E.: Recent development in the design of wind deflectors for vertical axis wind turbine : a review (2021) Wang, Y.; Sun, T.: Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies. Renew. Energy 43, 30–36 (2012) Abbasi, S.A.; Abbasi, N.: The likely adverse environmental impacts of renewable energy sources. Appl. Energy 65, 121–144 (2000). https://doi.org/10.1016/S0306-2619(99)00077-X Harte, J.; Jassby, A.: Energy technologies and natural environments: the search for compatibility. Ann. Rev. Energy 3, 101–146 (1978). https://doi.org/10.1146/annurev.eg.03.110178.000533 Abbasi, S.A.; Tabassum-Abbasi, A.T.: Impact of wind-energy generation on climate: a rising spectre. Renew. Sustain. Energy Rev. 59, 1591–1598 (2016). https://doi.org/10.1016/j.rser.2015.12.262 Ochieng, E.G.; Melaine, Y.; Potts, S.J.; Zuofa, T.; Egbu, C.O.; Price, A.D.F., et al.: Future for offshore wind energy in the United Kingdom: the way forward. Renew. Sustain. Energy Rev. 39, 655–666 (2014). https://doi.org/10.1016/j.rser.2014.07.105 Jiang, L.; Xiang, D.; Tan, Y.F.; Nie, Y.H.; Cao, H.J.; Wei, Y.Z., et al.: Analysis of wind turbine Gearbox’s environmental impact considering its reliability. J. Clean. Prod. 180, 846–857 (2018). https://doi.org/10.1016/j.jclepro.2018.01.078 Uddin, M.S.; Kumar, S.: Energy, emissions and environmental impact analysis of wind turbine using life cycle assessment technique. J. Clean. Prod. 69, 153–164 (2014). https://doi.org/10.1016/j.jclepro.2014.01.073 Besnard, F., Patrikssont, M., Strombergt, A.-B., Wojciechowskit, A., Bertling, L.: An optimization framework for opportunistic maintenance of offshore wind power system. In: Proceedings of the 2009 IEEE Bucharest PowerTechnology, p. 1–7 (2009) Wilson, J.C.; Elliott, M.; Cutts, N.D.; Mander, L.; Mendão, V.; Perez-Dominguez, R., et al.: Coastal and offshore wind energy generation: is it environmentally benign? Energies 3, 1383–1422 (2010) Kaldellis, J.K.; Apostolou, D.; Kapsali, M.; Kondili, E.: Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart. Renew. Energy 92, 543–556 (2016) Snyder, B.; Kaiser, M.J.: Ecological and economic cost-benefit analysis of offshore wind energy. Renew. Energy 34, 1567–1578 (2009)