Principal component regression in NIR analysis: Viewpoints, background details and selection of components

Journal of Chemometrics - Tập 2 Số 2 - Trang 155-167 - 1988
Tormod Næs1, Harald Martens2
1Norwegian Food Research Institute, Box 50, 1432 ås-NLH, Norway
2Norwegian Computing Centre, Forskningsvegen 1b, Oslo 3, Norway

Tóm tắt

AbstractIn this paper we present formulae for prediction error related to principal component regression (PCR). The difference between PCR and ordinary least‐squares (LS) regression is discussed in relation to these formulae. This discussion is used as a basis for a treatment of PCR in NIR analysis. The theory is illustrated by two examples from NIR analysis.

Từ khóa


Tài liệu tham khảo

Osborne B. G., 1986, Near Infrared Spectroscopy in Food Analysis

Gunst R. F., 1977, J. Amer. Statist. Assoc., 72, 616, 10.1080/01621459.1977.10480625

Gunst R. F., 1979, Technometrics, 21, 55, 10.1080/00401706.1979.10489722

Næs T., 1985, Technometrics, 27, 301, 10.1080/00401706.1985.10488055

Martens H., 1987, Near‐infrared technology in the agricultural and food industries, 57

10.2307/2684086

10.1366/0003702854248944

10.1039/an9851001233

10.1021/ac00126a051

10.2307/2347270

Weisberg S., 1985, Applied Linear Regression

10.1080/03610927308827089

10.1016/0167-7152(85)90059-8

Mittelhammer R. C., 1977, Amer. J. Argic. Econ., 336

10.2307/2348005

Mardia K. V., 1979, Multivariate Analysis

Wold H., 1966, Multivariate Analysis

Stone M., 1973, J. Roy. Statis. Soc., B, 36, 111

T.Næs ‘Leverage and influence measures related to PCR’ Report Norwegian Food Research Institute (1986).