Principal component analysis and manifold learning techniques for the design of brain-computer interfaces based on steady-state visually evoked potentials
Tài liệu tham khảo
McFarland, 2011, Brain-computer interfaces for communication and control, Commun. ACM, 54, 60, 10.1145/1941487.1941506
Schalk, 2004, BCI2000: a general-purpose brain-computer interface (BCI) system, IEEE Trans. Biomed. Eng., 51, 1034, 10.1109/TBME.2004.827072
Vidal, 1977, Real-time detection of brain events in EEG, Proc. IEEE, 65, 633, 10.1109/PROC.1977.10542
Chen, 2015, High-speed spelling with a noninvasive brain-computer interface, Proc. Natl. Acad. Sci. USA, 112, E6058, 10.1073/pnas.1508080112
Wang, 2006, A practical VEP-based brain-computer interface, IEEE Trans. Neural Syst. Rehabil. Eng., 14, 234, 10.1109/TNSRE.2006.875576
Regan, 1989
Wang, 2008, Brain-computer interfaces based on visual evoked potentials, IEEE Eng. Med. Biol., 27, 64, 10.1109/MEMB.2008.923958
Gao, 2014, Visual and auditory brain-computer interfaces, IEEE Trans. Biomed. Eng., 61, 1436, 10.1109/TBME.2014.2300164
Regan, 1982, Comparison of transient and steady-state methods, Ann. NY Acad. Sci., 388, 45, 10.1111/j.1749-6632.1982.tb50784.x
E. Basar, EEG-Brain Dynamics: Relation Between EEG and Brain Evoked Potentials, in: Brain Lang 1980, Elsevier, Amsterdam.
Sayilgan, 2021, Evaluation of wavelet features selected via statistical evidence from steady-state visually-evoked potentials to predict the stimulating frequency, J. Fac. Eng. Archit. Gazi Univ., 36, 593
Sayilgan, 2021, Evaluation of mother wavelets on steady-state visually-evoked potentials for triple-command brain-computer interfaces, Turk. J. Electr. Eng. Comput. Sci., 29, 2263, 10.3906/elk-2010-26
Duda, 2000
Roweis, 2000, Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323, 10.1126/science.290.5500.2323
Tenenbaum, 2000, A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319, 10.1126/science.290.5500.2319
Coifman, 2005, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Appl. Math., 102, 7426
Van der Maaten, 2008, Visualizing data using t-SNE, J. Mach. Learn. Res., 9, 2579
Hinton, 2003, Stochastic neighbor embedding, 857
Li, 2022, Analysis and visualization of accidents severity based on LightGBM-TPE, Chaos Solitons Fractals, 157, 10.1016/j.chaos.2022.111987
Yesilkaya, 2022, Manifold learning methods for the diagnosis of ovarian cancer, J. Comput. Sci., 63, 10.1016/j.jocs.2022.101775
Tyagi, 2017, A comparison of feature extraction and dimensionality reduction techniques for EEG-based BCI system, IUP J. Comput. Sci., 11, 51
You, 2020, Motor imagery EEG classification based on flexible analytic wavelet transform, Biomed. Signal Process. Control, 62, 10.1016/j.bspc.2020.102069
Li, 2016, Extracting the nonlinear features of motor imagery EEG using parametric t-SNE, Neurocomputing, 218, 371, 10.1016/j.neucom.2016.08.083
E. Krivov, M. Belyaev, Dimensionality Reduction with Isomap Algorithm for EEG Covariance Matrices, in: 2016 4th International Winter Conference on Brain-Computer Interface, BCI, IEEE, pp. 1–4, http://dx.doi.org/10.1109/IWW-BCI.2016.7457448.
Li, 2019, Feature extraction and visualization of MI-EEG with L-MVU algorithm, 835
Sadiq, 2021, Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces, Expert Syst. Appl., 164, 10.1016/j.eswa.2020.114031
Li, 2017, Adaptive feature extraction of motor imagery EEG with optimal wavelet packets and SE-Isomap, Appl. Sci., 7, 390, 10.3390/app7040390
Tan, 2020, Dimensionality reduction in evolutionary algorithms-based feature selection for motor imagery brain-computer interface, Swarm Evol. Comput., 52, 10.1016/j.swevo.2019.100597
Bischof, 2004, Feature mapping using pca. Locally linear embedding and isometric feature mapping for EEG-based brain computer interface, 189
Gan, 2006
Vilic, 2013
Carvalho, 2015, Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs, Biomed. Signal Process. Control, 21, 34, 10.1016/j.bspc.2015.05.008
Zerafa, 2018, To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs, J. Neural Eng., 15, 1001, 10.1088/1741-2552/aaca6e
Sayilgan, 2022, Investigating the effect of flickering frequency pair and mother wavelet selection in steady-state visually-evoked potentials on two-command brain-computer interfaces, IRBM, 43, 594, 10.1016/j.irbm.2022.04.006
Sayilgan, 2020, Duragan Durum Gorsel Uyaran Potansiyellerinden Fourier Donusumu ile Uc Farklı Frekansın Kestirimi, Duzce Univ. Bilim Teknoloji Derg., 8, 2337
Sayilgan, 2021, Frequency recognition from temporal and frequency depth of the brain-computer interface based on steady-state visual evoked potentials, J. Intell. Syst. Appl., 4, 68, 10.54856/jiswa.202105160
Degirmenci, 2021, Evaluation of Wigner–Ville distribution features to estimate steady-state visual evoked potentials’ stimulation frequency, J. Intell. Syst. Appl., 4, 133, 10.54856/jiswa.202112178
Avci, 2022, Design of steady-state visually-evoked potential based brain-computer interface system, J. Intell. Syst. Appl., 5, 86, 10.54856/jiswa.202212214
Sayilgan, 2021, Evaluating steady-state visually evoked potentials-based brain-computer interface system using wavelet features and various machine learning methods
Wold, 1987, Principal component analysis, Chemometr. Intell. Lab. Syst., 2, 37, 10.1016/0169-7439(87)80084-9
Selek, 2021, The effect of principal component analysis in the diagnosis of congestive heart failure via heart rate variability analysis, Proc. Inst. Mech. Eng. H, 235, 1479, 10.1177/09544119211036806
Torgerson, 1952, Multidimensional scaling: I. Theory and method, Psychometrika, 17, 401, 10.1007/BF02288916
Hout, 2013, Multidimensional scaling, WIREs Cogn. Sci., 4, 93, 10.1002/wcs.1203
Turhan, 2004
Lopes, 2022, Machine learning partners in criminal networks, Sci. Rep., 12, 15746, 10.1038/s41598-022-20025-w
Bottou, 1991, Stochastic gradient learning in neural networks, Proc. Neuro-Nimes, 91, 12
Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. System Sci., 55, 119, 10.1006/jcss.1997.1504
Barstugan, 2020, The effect of dictionary learning on weight update of AdaBoost and ECG classification, J. King Saud Univ. Comput. Inf. Sci., 32, 1149
Biau, 2016, A random forest guided tour, TEST, 25, 197, 10.1007/s11749-016-0481-7
Bishop, 2006, Pattern recognition, Mach. Learn., 128, 2006
Zhang, 2004
Mukherjee, 2012, Intrusion detection using naive Bayes classifier with feature reduction, Proc. Technol., 4, 119, 10.1016/j.protcy.2012.05.017
Berkson, 1944, Application of the logistic function to bio-assay, J. Amer. Statist. Assoc., 39, 357
Gok, 2011, Forecasting the sector portions of banks by logistic regression analysis, Dokuz Eylul Univ. Isletme Fak. Derg., 12, 43
Vapnik, 1995
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324