Principal component analysis and artificial neural network approach to electrical impedance tomography problems approximated by multi-region boundary element method

Engineering Analysis with Boundary Elements - Tập 31 - Trang 713-720 - 2007
Magdalena Stasiak1, Jan Sikora2, Stefan F. Filipowicz2, Konrad Nita2
1The Institute of Electrical Apparatus, Technical University of Lodz, Stefanowskiego 18/22, 90-924 Lodz, Poland
2The Institute of Theory of Electrical Engineering, Measurement and Information Systems, Warsaw University of Technology, Koszykowa 75, 00-661 Warsaw, Poland

Tài liệu tham khảo

Clay, 2002, Weighted regularization in EIT with applications acute cerebral stroke, IEEE Trans Med Imaging, 21, 629, 10.1109/TMI.2002.800572 Fear, 2002, Enhancing breast tumor detection with near-field imaging, IEEE Microwave Mag, 10.1109/6668.990683 Malich, 2000, Electrical impedance scanning for classifying suspicious breast lesion: first results, Eur Radiol, 10, 1555, 10.1007/s003300000553 Aliabadi, 2002, vol. 2 Sikora, 2006, Diffuse photon propagation in multilayered geometries, Phys Med Biol, 51, 497, 10.1088/0031-9155/51/3/003 Saulnier GJ, Blue RS, Newell JC, Isaacson D, Edic PM. Electrical impedance tomography. IEEE Signal Process Mag 2001;31–43. Levy, 2002, Electromagnetic impedance tomography (EMIT): a new method for impedance imaging, IEEE Trans Med Imaging, 21, 676, 10.1109/TMI.2002.800573 Yerworth R, Horesh L, Bayford RH, Tizzard A, Holder DS. Robustness of linear and nonlinear reconstruction algorithms for brain EITS. Proceedings of the XIIth international conference on electrical bioimpedance and V electrical impedance tomography, vol. 2, Poland, 2004. p. 499–502. Frangi, 2002, Propagation of measurement noise through backprojection reconstruction in electrical impedance tomography, IEEE Trans Med Imaging, 21, 566, 10.1109/TMI.2002.800612 Polydorides, 2002, Krylov subspace iterative techniques: on the detection of brain activity with electrical impedance tomography, IEEE Trans Med Imaging, 21, 596, 10.1109/TMI.2002.800607 Hsiao, 2001, Application of hybrid genetic/powell algorithm and a boundary element method to electrical impedance tomography, J Comput Phys, 173, 433, 10.1006/jcph.2001.6866 Giza Z, Filipowicz SF, Sikora J. Simulated annealing in electrical impedance tomography. Conference on inverse problems, Hong Kong, January 2002. p. 336–43. Aykroyd RG, Cattle BA, West RM. Boundary element methods and Markov chain Monte Carlo for object location applied to electrical tomography problems. Third international symposium on process tomography, Poland, 2004. p. 11–4. Ratajewicz-Mikolajczak, 2002, Neural networks method for identification of objects behind the screen, IEEE Trans Med Imaging, 21, 613, 10.1109/TMI.2002.800581 Waristo W, Fan LS. Development of 3-dimensional electrical capacitance tomography based on neural network multi-criterion optimization image reconstruction. Third world congress on industrial process tomography, Canada, 2003. p. 391–6. Tidswell, 2001, Three-dimensional electrical impedance tomography of human brain activity, NeuroImage, 13, 10.1006/nimg.2000.0698 de Munk, 2000, The boundary element method in the forward and inverse problem of electrical impedance tomography, IEEE Trans Biomed Eng, 47, 792, 10.1109/10.844230 Ferguson, 1997, Factors affecting the accuracy of the boundary element method in the forward problem—calculating surface potentials, IEEE Trans Biomed Eng, 44, 10.1109/10.641342 Frijns, 2000, Improving the accuracy of the boundary element method by the use of second-order interpolation functions, IEEE Trans Biomed Eng, 47, 1336, 10.1109/10.871407 Cichocki, 2002 Jolliffe IT. Principal component analysis. Springer series in statistics, 1986. Yorkey, 1987, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans Biomed Eng, 34, 843, 10.1109/TBME.1987.326032 Lisboa, 2000 Egmont-Petersen, 2002, Image processing with neural network—a review, Pattern Recognition, 35, 2279, 10.1016/S0031-3203(01)00178-9 Stasiak M, Siwek K, Sikora R, Filipowicz SF, Sikora J. The combination of principal component analysis with neural network as a highly efficient 3D EIT solution. Proceedings of third world congress on industrial process tomography, Canada, 2003. p. 664–70.