Primitive tensors and directed hypergraphs
Tài liệu tham khảo
Ausiello, 1983, Graph algorithms for functional dependency manipulation, J. ACM, 30, 752, 10.1145/2157.322404
Ausiello, 1986, Minimal representation of directed hypergraphs, SIAM J. Comput., 15, 418, 10.1137/0215029
Ausiello, 2001, Directed hypergraphs: problems, algorithmic results, and a novel decremental approach, vol. 2202, 312
Bapat, 1997, Nonnegative Matrices and Applications, vol. 64
Bermann, 1979
Buló, 2009, New bounds on the clique number of graphs based on spectral hypergraph theory, 45
Chang, 2008, Perron–Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6, 507, 10.4310/CMS.2008.v6.n2.a12
Chang, 2013, On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors, J. Math. Anal. Appl., 408, 525, 10.1016/j.jmaa.2013.04.019
Chang, 2011, Primitivity the convergence of the NZQ method, and the largest eigenvalue for nonnegative tensors, SIAM J. Matrix Anal. Appl., 32, 806, 10.1137/100807120
Chen
Cooper, 2012, Spectra of uniform hypergraphs, Linear Algebra Appl., 436, 3268, 10.1016/j.laa.2011.11.018
P. Drineas, L. Lim, A multilinear spectral theory of hypergraphs and expander hypergraphs, Stanford University, Stanford, CA, preprint, 2005.
Friedland, 2013, Perron–Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438, 738, 10.1016/j.laa.2011.02.042
Gallo, 1993, Directed hypergraphs and applications, Discrete Appl. Math., 40, 177, 10.1016/0166-218X(93)90045-P
Horn, 1985
Hu, 2012, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24, 564, 10.1007/s10878-011-9407-1
Hu, 2014, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math., 169, 140, 10.1016/j.dam.2013.12.024
Levin, 2008
Li, 2013, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl., 20, 1001, 10.1002/nla.1877
Li, 2014, On the limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra, 62, 362, 10.1080/03081087.2013.777436
Li, 2013, The perturbation bound for the Perron vector of a transition probability tensor, Numer. Linear Algebra Appl., 20, 985, 10.1002/nla.1886
Li, 2012, Har: hub, authority and relevance scores in multi-relational data for query search, 141
Ng, 2009, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31, 1090, 10.1137/09074838X
Ng, 2011, MultiRank: co-ranking scheme for objects and relations in multidimensional data, 1217
Pearson
Pearson, 2014, On spectral hypergraph theory of the adjacency tensor, Graphs Combin., 30, 1233, 10.1007/s00373-013-1340-x
Qi, 2014, H+-eigenvalues of Laplacian tensor and signless Laplacians, Commun. Math. Sci., 12, 1045, 10.4310/CMS.2014.v12.n6.a3
Xie, 2013, H-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Front. Math. China, 8, 107, 10.1007/s11464-012-0266-6
Xie, 2013, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear Algebra Appl., 20, 1030, 10.1002/nla.1910
Yang, 2011, Further results for Perron–Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32, 1236, 10.1137/100813671