Primitive shoshonites from Fiji: Geochemistry and source components

American Geophysical Union (AGU) - Tập 10 Số 7 - 2009
Roman A. J. Leslie1, L Danyushevsky1, Anthony J. Crawford1, Alicia Verbeeten1
1ARC Centre of Excellence in Ore Deposits, School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania, 7001, Australia

Tóm tắt

The eruption of shoshonitic magmas in Fiji during the Late Miocene‐Pliocene (5.5–3 Ma) from 11 main volcanic centers along three broad ENE and NNW trending lineaments coincides with well‐developed spreading in the North Fiji and Lau back‐arc basins and maximum rotation of the Fiji Platform. The most mafic shoshonitic lavas (absarokites) range from 8.4 to 15.2 wt % MgO and are variably clinopyroxene + olivine‐phyric. Fijian shoshonitic suites display a range of enrichment in large ion lithophile elements, Th, U, and P relative to rare earth elements and high field strength elements (HFSE), reflecting variable contributions by the subarc mantle source and subduction‐related components. The subarc mantle source component controls HFSE, heavy rare earth elements, to a lesser degree light rare earth elements (LREE), and most importantly the sensitivity of the mantle source with respect to subduction‐related enrichment processes, whereas Pb, K, Sr, Ba, Rb, Th, U, P2O5, and LREE are contributed by hydrous or supercritical fluid(s) and sediment melts that are added to the subarc mantle. Fijian shoshonitic suites situated ∼150 km apart display a wide range of Nb/Yb (0.3–4.3), implying that there is significant spatial heterogeneity in the sub‐Fijian mantle with respect to the ambient fertility of mantle sources independent of subduction‐related enrichment. The range in incompatible element ratios (e.g., Th/Nb, U/Nb, Ba/Th, Ba/La, P/Nd, and Ce/Pb) displayed by Fijian shoshonitic suites cannot reflect addition of the same subduction‐derived component to variably enriched subarc mantle sources. Differences in the relative amount of fluid versus sediment melt and potentially the composition of the subducted sediment are required to explain the data. The greater overall subduction‐related enrichment in Fijian shoshonites relative to calk‐alkaline and tholeiitic arc magmas is attributed to a melt generation process involving low‐degree partial melting of metsomatized subarc lithosphere in contrast to magmas associated with active or steady state arcs, where higher degrees of melting occur in response to volatile fluxing of the mantle wedge. Shoshonitic magma generation occurs in linear zones during extension of the arc lithosphere preceding arc fragmentation and establishment of back‐arc spreading centers.

Từ khóa


Tài liệu tham khảo

10.1016/0024-4937(94)90060-4

10.1029/JB091iB06p05913

10.1130/0091‐7613(1988)016<0925:RGEOTN>2.3.CO;2

Auzende J. M., 1996, Backarc Basins: Tectonics and Magmatism, 139

10.1007/s004100050431

10.1093/petrology/29.5.927

10.1093/petrology/31.3.747

10.1029/2000TC001259

10.1029/JB094iB04p04467

10.1016/0012‐821X(94)90154‐6

10.1016/0016‐7037(95)00215‐L

10.1038/378054a0

Carman G. D.(1986) The geology and geochemistry of shoshonite volcanics of the Astrolabe Islands Kandavu Fiji B.Sc. (Hons) thesis Geol. Dep. Victoria Univ. of Wellington Wellington New Zealand.

10.1029/1999GC000010

Crawford A. J., 1988, Geology and Offshore Resources of Pacific Island Arcs: Vanuatu Region, 301

Crawford A. J., 2003, 120–0 Ma tectonic evolution of the southwest pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System, Spec. Publ. Geol. Soc. Aust., 22, 377

10.1016/S0377‐0273(01)00213‐X

10.1130/G24349A.1

10.1029/GM096p0251

10.1098/rsta.1991.0051

10.1029/91JB02571

10.1016/B978-0-444-42274-3.50030-5

10.1130/0091‐7613(1975)3<53:PKRICM>2.0.CO;2

10.1093/petrology/35.6.1557

10.1007/BF00307867

10.1130/0091‐7613(2001)029<0631:HSMMUT>2.0.CO;2

10.1007/BF00371911

10.1029/97JB00788

10.1029/2007GC001619

10.1071/EG975047

10.1071/EG978117

10.1016/0024‐4937(92)90006‐K

10.1016/0024‐4937(92)90018‐T

10.1093/petrology/43.2.315

10.1016/0377‐0273(93)90067‐2

10.1093/petrology/37.6.1523

Gamble J. A., 1997, Primitive K‐rich magmas from Clark Volcano, southern Kermadec arc: A paradox in the K‐depth relationship, Can. Mineral., 35, 275

10.1093/petrology/44.3.457

10.1007/BF00385777

10.1130/0091‐7613(1976)4<123:FIATOI>2.0.CO;2

10.1007/978-3-642-68012-0

10.1016/0012‐821X(84)90129‐8

10.1086/629158

10.1029/JB094iB04p04561

10.1029/JB094iB04p04579

10.1029/JB092iB13p13841

10.1029/JB095iB03p02553

10.1144/gsjgs.150.3.0563

Hathway B., 1994, Geology and Submarine Resources of the Tonga‐Lau‐Fiji Region, 153

10.1007/s00410‐003‐0489‐3

10.1029/2000GC000105

10.1086/607398

10.1111/j.1365‐246X.1992.tb00869.x

10.1016/0012‐821X(86)90082‐8

10.1007/BF00381447

10.1029/1999GC000014

10.1016/0040‐1951(78)90114‐2

10.1016/j.epsl.2005.03.005

10.1029/JB095iB05p06929

10.1038/nature03971

Kroenke L. W.(1984) Cenozoic tectonic development of the southeast Pacific SOPAC Tech. Bull. 6 South Pac. Appl. Geosci. Comm. Secr. Suva Fiji.

10.1038/336459a0

10.1029/JB094iB04p04497

10.1007/BF00286826

10.1039/ja9961100899

Luhr J. F., 1997, Extensional tectonics and the diverse primitive rocks in the western Mexican volcanic belt, Can. Mineral., 35, 473

10.1016/0012‐821X(91)90029‐H

10.1016/0009‐2541(94)00140‐4

10.1038/198677a0

10.1016/0012‐821X(94)90055‐8

10.1130/0016‐7606(1987)98<238:PAGOTC>2.0.CO;2

10.1016/S0377‐0273(97)00006‐1

10.1016/0016‐7037(83)90217‐X

10.1016/0024‐4937(80)90067‐5

10.1016/S0012‐821X(04)00072‐X

Pearce J. A., 1982, Andesites: Orogenic Andesites and Related Rocks, 525

Pearce J. A., 1993, Magmatic Processes and Plate Tectonics, 373

10.1146/annurev.ea.23.050195.001343

10.1093/petrology/38.10.1331

10.1029/93GL01240

10.1016/S0012‐821X(98)00212‐X

10.1016/S0040‐1951(97)00206‐0

10.1093/petrology/egi005

10.1016/0012‐821X(88)90135‐5

Plank T., 1992, Sediments melt and basaltic crust dehydrates at subduction zones, Eos Trans. AGU, 73, 637

10.1016/S0009‐2541(97)00150‐2

10.1093/petrology/40.1.167

10.1016/j.jvolgeores.2003.12.004

10.1016/0009‐2541(94)90169‐4

10.1007/BF00378265

10.1029/GM096p0263

10.1029/1999GC000032

10.1016/j.epsl.2004.09.020

10.1144/gsjgs.148.1.0115

10.1038/36087

10.1029/JB094iB04p04655

Spiegelman M. W., 2002, Highway to hell: Geochemical consequences of channelised melt transport, Geochim. Cosmochim. Acta, 66, A731

10.1016/S0016‐7037(98)00101‐X

10.1130/0091‐7613(1988)016<0426:SMINAN>2.3.CO;2

10.1007/BF00302497

10.1016/S0024‐4937(98)00049‐8

10.1029/2000JB900342

Sun S. S., 1989, Magmatism in the Ocean Basins, 313

Tatsumi Y., 1996, Subduction Zone Magmatism

10.1029/1999JB900305

10.1093/petrology/37.1.45

10.1029/96JB00430

10.1016/S0016‐7037(97)00281‐0

Verbeeten A. C.(1996) Petrology geochemistry and tectonic implications of magmatism along the northern Hunter Ridge and Kadavu Island Group Fiji Ph.D. thesis Geol. Dep. Univ. of Tas. Hobart Tas. Australia.

10.1130/0091‐7613(1989)017<1115:MMASZT>2.3.CO;2

Whelan P. M., 1985, Geology and Offshore Resources of Pacific Island Arcs—Tonga Region, 415

Whitford D. J., 1976, Volcanism in Australasia, 63

10.1016/0012‐821X(93)90078‐N

10.1093/petrology/39.9.1641

10.1016/0040‐1951(92)90196‐D

Yan C. Y., 1993, A plate tectonic reconstruction of the southwest Pacific, 0–100 Ma, Proc. Ocean Drill. Program Sci. Results, 130, 697

10.1111/j.1751‐908X.2001.tb00596.x