Primitive satisfaction and equational problems for lattices and other algebras
Tóm tắt
This paper presents a general method of solving equational problems in all equational classes of algebras whose congruence lattices are distributive, such as those consisting of lattices, relation algebras, cylindric algebras, orthomodular lattices, lattice-ordered rings, lattice-ordered groups, Heyting algebras, other lattice-ordered algebras, implication algebras, arithmetic rings, and arithmetical algebras.
Từ khóa
Tài liệu tham khảo
Baker, Kirby A., 1969, Equational classes of modular lattices, Pacific J. Math., 28, 9, 10.2140/pjm.1969.28.9
Baker, Kirby A., 1971, Equational axioms for classes of lattices, Bull. Amer. Math. Soc., 77, 97, 10.1090/S0002-9904-1971-12618-6
\bysame, Congruence-valued logic (to appear).
\bysame, Equational axioms for classes of Heyting algebras (preprint),
G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433-454.
Birkhoff, Garrett, 1944, Subdirect unions in universal algebra, Bull. Amer. Math. Soc., 50, 764, 10.1090/S0002-9904-1944-08235-9
Birkhoff, Garrett, 1967, Lattice theory, 3
Bruns, Günter, 1971, Varieties of orthomodular lattices, Canadian J. Math., 23, 802, 10.4153/CJM-1971-089-1
Bruns, Günter, 1972, Varieties of orthomodular lattices. II, Canadian J. Math., 24, 328, 10.4153/CJM-1972-027-4
Epstein, George, 1960, The lattice theory of Post algebras, Trans. Amer. Math. Soc., 95, 300, 10.2307/1993293
Fuchs, L., 1963, Partially ordered algebraic systems
Grätzer, George, 1968, Universal algebra
Grätzer, George, 1971, Lattice theory. First concepts and distributive lattices
\bysame, Personal communication.
Henkin, Leon, 1961, Cylindric algebras, 83
L. Henkin, D. Monk and A. Tarski, Cylindric algebras. Part I, North-Holland, Amsterdam, 1971.
Herrmann, C., 1973, Weak (projective) radius and finite equational bases for classes of lattices, Algebra Universalis, 3, 51, 10.1007/BF02945103
Holland, Samuel S., Jr., 1970, The current interest in orthomodular lattices, 41
Jónsson, Bjarni, 1967, Algebras whose congruence lattices are distributive, Math. Scand., 21, 110, 10.7146/math.scand.a-10850
\bysame, Topics in universal algebra, Lecture Notes, Vanderbilt University, Nashville, Tenn., (1969/70).
Jónsson, Bjarni, 1952, Boolean algebras with operators. II, Amer. J. Math., 74, 127, 10.2307/2372074
Mal′cev, A. I., 1963, On the general theory of algebraic systems, Amer. Math. Soc. Transl. (2), 27, 125, 10.1090/trans2/027/09
McKay, C. G., 1967, On finite logics, Nederl. Akad. Wetensch. Proc. Ser. A 70=Indag. Math., 29, 363, 10.1016/S1385-7258(67)50050-1
McKenzie, Ralph, 1970, Equational bases for lattice theories, Math. Scand., 27, 24, 10.7146/math.scand.a-10984
Michler, Gerhard, 1970, Die primitiven Klassen arithmetischer Ringe, Math. Z., 113, 369, 10.1007/BF01110505
Mitschke, Aleit, 1971, Implication algebras are 3-permutable and 3-distributive, Algebra Universalis, 1, 182, 10.1007/BF02944976
Monk, Donald, 1970, On equational classes of algebraic versions of logic. I, Math. Scand., 27, 53, 10.7146/math.scand.a-10987
\bysame, Personal communication.
MacDonald, Sheila Oates, 1973, Various varieties, J. Austral. Math. Soc., 16, 363, 10.1017/S1446788700015172
Ore, Oystein, 1937, On the theorem of Jordan-Hölder, Trans. Amer. Math. Soc., 41, 266, 10.2307/1989622
Perkins, Peter, 1969, Bases for equational theories of semigroups, J. Algebra, 11, 298, 10.1016/0021-8693(69)90058-1
Pierce, R. S., 1967, Modules over commutative regular rings
Pixley, A. F., 1963, Distributivity and permutability of congruence relations in equational classes of algebras, Proc. Amer. Math. Soc., 14, 105, 10.2307/2033968
Pixley, A. F., 1972, Completeness in arithmetical algebras, Algebra Universalis, 2, 179, 10.1007/BF02945027
R. Quackenbush, personal communication.
Rasiowa, Helena, 1970, The mathematics of metamathematics, 3
Schmidt, E. T., 1969, Kongruenzrelationen algebraischer Strukturen
Tarski, A., 1968, Equational logic and equational theories of algebras, 275
Traczyk, T., 1964, An equational definition of a class of Post algebras, Bull. Acad. Polon. Sci. S\'{e}r. Sci. Math. Astronom. Phys., 12, 147
Werner, Heinrich, 1970, Charakterisierungen der primitiven Klassen arithmetischer Ringe, Math. Z., 115, 197, 10.1007/BF01109858
Wille, Rudolf, 1969, Primitive Länge und primitive Weite bei modularen Verbänden, Math. Z., 108, 129, 10.1007/BF01114466
Wille, Rudolf, 1969, Variety invariants for modular lattices, Canadian J. Math., 21, 279, 10.4153/CJM-1969-029-2
