Primary osteoblast cell response to sol-gel derived bioactive glass foams

Springer Science and Business Media LLC - Tập 16 - Trang 851-856 - 2005
P. Valerio1, M. H. R. Guimaráes2, M. M. Pereira2, M. F. Leite1, A. M. Goes3
1Department of Physiology and Biophysics, Federal University of Minas, Gerais (UFMG), Belo Horizonte, Brazil
2Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte, Brazil
3Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Tóm tắt

Bioactive glass macroporous structures were developed in this work to be used as scaffolds for bone tissue engineering applications. A sol-gel route was used to obtain glass foams with the introduction of a gas phase in the solution and by vigorous agitation of the sol-gel solution that contains a foam agent. Stable and homogeneous foams were formed near the gelation point, which were than dried and heat-treated. Macroporous structures with interconnected pores of up to 500 μ m, porosity as high as 88% and specific surface area of 92 m2/g were obtained. The porous glasses were tested in osteoblast cultures to evaluate adhesion, proliferation, collagen and alkaline phosphatase production. Osteoblast proliferation was higher in the presence of the foams as well as was the collagen secretion, when compared to control. The alkaline phosphatase production was not altered. Viable osteoblasts could be seen inside the foams, suggesting that the produced porous glass foams are a promising materials for bone repair, since it provides a good environment for the adhesion and proliferation of osteoblasts.

Tài liệu tham khảo

D. BAKSH, in “Bone Engineering,” edited by J. E. Davies (USA, 2000) p. 488. K. J. L. BURG, S. PORTER and J. F. KELLAN, Biomaterials 21 (2000) 2347. M. M. PEREIRA, A. E. CLARK and L. L. HENCH, J. Biomed. Mat. Res. 28 (1994) 693. H. J. BREKKE and M. J. TOTH, ibid. 43 (1998) 380. D. C. GREENSPAN, J. P. ZHONG and D. L. WHELLER, in Proceedings of the 11 International Simposium Ceramics in Medicine (World Scientific, New York, 1998) p. 345. I. D. XYNOS, M. V. J. HUKKANEN, J. J. BATTEN, L. D. BUTTERY and L. L. HENCH, Calc. Tiss. Int. 67 (2000) 321. I. D. XYNOS, A. J. EDGARD, L. D. K. BUTTERY and L. L. HENCH, J. Biomed. Mat. Res. 55 (2001) 151. M. B. COELHO, I. R. SOARES, H. S. MANSUR and M. M. PEREIRA, Key. Eng. Mat. 240 (2003) 257. P. SEPULVEDA, J. R. JONES and L. L. HENCH, J. Biomed. Mat. Res. 59 (2002) 340. J. R. JONES and L. L. HENCH, Key. Eng. Mat. 240 (2003) 209. A. R. TEN CATE, in “Oral Histology” (Mosby, USA, 1994) p. 375. I. A. SILVER and M. ERECINSKA, Biomaterials 22 (2001) 175. M. AMARAL and M. A. COSTA, ibid. 23 (2002) 4897. H. TULLBERG_REINERT and G. JUNDT, Histochem. Cell. Biol. 112 (1999) 271. G. TAKAHASHI, Cell. 11 (1979) 114. J. A. ROETHER, A. R. BOCCACCINI, L. L. HENCH, V. MAQUET, S. GAUTIER and R. JERôME, Biomaterials 23 (2002) 3871. K. MATSUZAKA, X. F. WALBOOMERS, M. YOSHINARI, T. INOUE and J. A. JANSEN, ibid. 24 (2003) 2711. P. SEPULVEDA, J. R. JONES and L. L. HENCH, J. Biomed. Mat. Res. 61 (2002) 301. P. VALERIO, M. M. PEREIRA, A. M. GOES and M. F. LEITE, Biomaterials, in press. D. M. REFFIT, N. OGSTON, R. JUGDAOHSINGH, H. F. CHEUNG and G. N. HAMPSON, Bone 32 (2003) 127. V. MAQUET, A. R. BOCCACCINI, L. PRAVATA and R. JERôME, J. Biomed. Mat. Res. 66A (2003) 335. M. BOSETTI, L. ZANARDI, L. L. HENCH and M. CANNAS, J. Biomater. Res. 1 (2003) 89. B. LYU, Zhongguo Ye. Xue. 15 (1993) 5. S. C. MARKS and S. N. POPFF, Bone. Cell. Biology. 183 (1988) 1. A. MYRDYCZ, D. CALLENS, K. KOT, F. MONCHAU, E. RADZISZEWSKI, A. LEFEBVRE and H. F. HILDEBRAND, Biomol. Engng. 19 (2002) 219. R. C. THOMSON, M. J. YAZEMSKI, J. M. POWERS and A. G. MIKOS, Biomaterials 19 (1998) 1935. M. E. HASENBEIN, T. T. ANDERSEN and R. BIZIOS, ibid. 23 (2002) 3937. A. SHIMAZU, I. IRATA and M. OKAZAKI, ibid. 25 (2004) 2577. E. VERNE, M. BOSETTI, C. V. BROVARONE, C. MOISESCU, F. LUPO, S. SAPRIANO and M. CANNAS, ibid. 23 (2002) 3395.