Các tế bào gan chính từ chuột thiếu enzyme cysteine dioxygenase cho thấy nồng độ cysteine tăng và tỷ lệ chuyển hóa cysteine thành hydrogen sulfide và thiosulfate cao hơn

Amino Acids - Tập 46 - Trang 1353-1365 - 2014
Halina Jurkowska1,2, Heather B. Roman1, Lawrence L. Hirschberger1, Kiyoshi Sasakura3, Tetsuo Nagano3, Kenjiro Hanaoka3, Jakub Krijt4, Martha H. Stipanuk1
1Division of Nutritional Sciences, Cornell University, Ithaca, USA
2Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
3Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
4First Faculty of Medicine and General University Hospital, Institute of Inherited Metabolic Disorders, Charles University in Prague, Prague, Czech Republic

Tóm tắt

Sự oxi hóa cysteine trong các tế bào động vật có vú diễn ra qua hai con đường: con đường oxi hóa trực tiếp được điều chỉnh chặt chẽ, trong đó bước đầu tiên được xúc tác bởi enzyme cysteine dioxygenase (CDO), và con đường khử lưu huỳnh-oxi hóa, trong đó lưu huỳnh được giải phóng ở trạng thái oxi hóa đã được giảm. Để đánh giá tác động của việc thiếu CDO đối với sự sản xuất hydrogen sulfide (H2S) và thiosulfate (một chất trung gian trong quá trình oxi hóa H2S thành sulfate), cũng như để khám phá vai trò của cystathionine γ-lyase (CTH) và cystathionine β-synthase (CBS) trong quá trình khử lưu huỳnh cysteine bởi gan, chúng tôi đã nghiên cứu chuyển hóa cysteine trong các tế bào gan được tách ra từ chuột thiếu gen Cdo1 và chuột hoang dã. Các tế bào gan từ chuột thiếu Cdo1 sản xuất nhiều H2S và thiosulfate hơn so với các tế bào gan từ chuột hoang dã. Lưu lượng cysteine lớn hơn thông qua các phản ứng khử lưu huỳnh cysteine được xúc tác bởi CTH và CBS trong các tế bào gan từ chuột thiếu Cdo1 dường như là hậu quả của mức cysteine cao hơn, mà nguyên nhân là do sự thiếu hụt CDO và do đó là sự thiếu hụt chuyển hóa cysteine qua các con đường phụ thuộc cysteinesulfinate. Cả CBS và CTH đều có vẻ góp phần đáng kể vào quá trình khử lưu huỳnh cysteine, với ước tính 56 % do CBS và 44 % do CTH trong các tế bào gan từ chuột hoang dã, và 63 % do CBS và 37 % do CTH trong các tế bào gan từ chuột thiếu Cdo1.

Từ khóa

#cysteine; cysteine dioxygenase; hydrogen sulfide; thiosulfate; cystathionine γ-lyase; cystathionine β-synthase; tế bào gan

Tài liệu tham khảo

Abeles RH, Walsh CT (1973) Acetylenic enzyme inactivators. Inactivation of γ-cystathionase, in vitro and in vivo, by propargylglycine. J Am Chem Soc 95:6124–61251 Ang A, Konigstorfer A, Giles G, Bhatia M (2012) Measuring free tissue sulfide. Adv Biol Chem 2:360–365 Bella DL, Stipanuk MH (1995) Effects of protein, methionine, or chloride on acid-base balance and on cysteine catabolism. Am J Physiol 269:E910–E917 Bradley H, Gough A, Sokhi RS, Hassell A, Waring R, Emery P (1994) Sulfate metabolism is abnormal in patients with rheumatoid arthritis. Confirmation by in vivo biochemical findings. J Rheumatol 21:1192–1196 Brait M, Ling S, Nagpal JK, Chang X, Park HL, Lee J, Okamura J, Yamashita K, Sidransky D, Kim MS (2012) Cysteine dioxygenase 1 is a tumor suppressor gene silenced by promoter methylation in multiple human cancers. PLoS One 7(9):e44951 Cavallini D, Mondovi B, De Marco C, Sciosciasantoro A (1962) Inhibitory effect of mercaptoethanol and hypotaurine on the desulfhydration of cysteine by cystathionase. Arch Biochem Biophys 96:456–457 Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine β-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279:52082–52086 Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284:11601–11612 Cuevasanta E, Denicola A, Alvarez B, Möller MN (2012) Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS ONE 7:e34562 Czubak J, Wróbel M, Jurkowska H (2002) Cystathionine γ-lyase. An enzymatic assay of α-ketobutyrate using lactate dehydrogenase. Acta Biol Crac Ser Zool 44:113–117 Di Meo I, Fagiolari G, Prelle A, Viscomi C, Zeviani M, Tiranti V (2011) Chronic exposure to sulfide causes accelerated degradation of cytochrome c oxidase in ethylmalonic encephalopathy. Antioxid Redox Signal 15:353–362 Dominy JE Jr, Hirschberger LL, Coloso RM, Stipanuk MH (2006) Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat. Biochem J 394:267–273 Dominy JE Jr, Hwang J, Guo S, Hirschberger LL, Zhang S, Stipanuk MH (2008) Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J Biol Chem 283:12188–12201 Dominy JE Jr, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, Ruan HB, Feldman J, Pierce K, Mostoslavsky R, Denu JM, Clish CB, Yang X, Shulman GI, Gygi SP, Puigserver P (2012) The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 48:900–913 Dorman DC, Moulin FJ, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 65:18–25 Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361 Huang J, Khan S, O’Brien PJ (1998) The glutathione dependence of inorganic sulfate formation from l- or d-cysteine in isolated rat hepatocytes. Chem Biol Interact 110:189–202 Jurkowska H, Uchacz T, Roberts J, Wróbel M (2011) Potential therapeutic advantage of ribose-cysteine in the inhibition of astrocytoma cell proliferation. Amino Acids 41:131–139 Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15:363–372 Koj A, Frendo J, Janik Z (1967) [35S]thiosulphate oxidation by rat liver mitochondria in the presence of glutathione. Biochem J 103:791–795 Kolluru GK, Shen X, Bir SC, Kevil CG (2013) Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 35C:5–20 Kraus J, Packman S, Fowler B, Rosenberg LE (1978) Purification and properties of cystathionine β-synthase from human liver: improved purification scheme and additional characterization of the enzyme in crude and pure form. Arch Biochem Biophys 222:44–52 Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F (2010) Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta 1797:1500–1511 Levitt MD, Abdel-Rehim MS, Furne J (2011) Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid Redox Signal 15:373–378 Linden DR, Furne J, Stoltz GJ, Abdel-Rehim MS, Levitt MD, Szurszewski JH (2012) Sulphide quinone reductase contributes to hydrogen sulphide metabolism in murine peripheral tissues but not in the CNS. Br J Pharmacol 165:2178–2190 Matsuo Y, Greenberg DM (1958) A crystalline enzyme that cleaves homoserine and cystathionine. I. Isolation procedure and some physicochemical properties. J Biol Chem 230:545–560 Nagy P, Pálinkás Z, Nagy A, Budai B, Tóth I, Vasas A (2014) Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 1840:876–891 Nicholson RA, Roth SH, Zhang A, Zheng J, Brookes J, Skrajny B, Bennington R (1998) Inhibition of respiratory and bioenergetic mechanisms by hydrogen sulfide in mammalian brain. J Toxicol Environ Health A 54:491–507 (677:350–357) Olson KR (2012) A practical look at the chemistry and biology of hydrogen sulfide. Antioxid Redox Signal 17:32–44 Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17:119–140 Rao AM, Drake MR, Stipanuk MH (1990) Role of the transsulfuration pathway and of γ-cystathionase activity in the formation of cysteine and sulfate from methionine in rat hepatocytes. J Nutr 120:837–845 Roman HB, Hirschberger LL, Krijt J, Valli A, Kožich V, Stipanuk MH (2013) The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS− production and evidence of pancreatic and lung toxicity. Antioxid Redox Signal. doi:10.1089/ars.2012.5010 Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T (2011) Development of a highly selective fluorescence probe for hydrogen sulfide. J Am Chem Soc 133:18003–18005 Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714 Shih VE, Carney MM, Mandell R (1979) A simple screening test for sulfite oxidase deficiency: detection of urinary thiosulfate by a modification of Sörbo’s method. Clin Chim Acta 95:143–145 Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine β-synthase and γ-cystathionase to H2S biogenesis via alternative transsulfuration reactions. J Biol Chem 284:22457–22466 Sörbo B (1957) A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta 23:412–416 Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6:179–209 Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577 Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277 Stipanuk MH, Ueki I (2011) Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis 34:17–32 Stipanuk MH, Hirschberger LL, Londono MP, Cresenzi CL, Yu AF (2004) The ubiquitin-proteasome system is responsible for cysteine-responsive regulation of cysteine dioxygenase concentration in liver. Am J Physiol Endocrinol Metab 286:E439–E448 Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63 Szczepkowski TW, Skarzynski B, Weber M (1961) The metabolic state of thiosulphate. Nature 189:1007–1008 Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15:200–205 Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH (2011) Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301:E668–E684 Ueki I, Roman HB, Hirschberger LL, Junior CC, Stipanuk MH (2012) Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxygenase. Am J Physiol Endocrinol Metab 302:E1292–E1299 Uhteg LC, Westley J (1979) Purification and steady-state kinetic analysis of yeast thiosulfate reductase. Arch Biochem Biophys 195:211–222 Uren JR, Ragin R, Chaykovsky M (1978) Modulation of cysteine metabolism in mice—effects of propargylglycine and L-cyst(e)ine-degrading enzymes. Biochem Pharmacol 27:2807–2814 Valentine WN, Frankenfeld JK (1974) 3-Mercaptopyruvate sulfurtransferase (EC 2.8.1.2): a simple assay adapted to human blood cells. Clin Chim Acta 51:205–210 Washtien W, Abeles RH (1977) Mechanism of inactivation of γ-cystathionase by the acetylenic substrate analogue propargylglycine. Biochemistry 16:2485–2491 Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32 Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J (2011) Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 121:459–488 Wróbel M, Jurkowska H, Sliwa L, Srebro Z (2004) Sulfurtransferases and cyanide detoxification in mouse liver, kidney, and brain. Toxicol Mech Methods 14:331–337 Yamanishi T, Tuboi S (1981) The mechanism of the L-cystine cleavage reaction catalyzed by rat liver γ-cystathionase. J Biochem 89:1913–1921 Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590