Primality Testing for Numbers of the Form h · 2n ± 1

Journal of Systems Science and Complexity - Tập 32 Số 5 - Trang 1473-1478 - 2019
Dandan Huang1, Yunling Kang2
1School of Software Engineering and School of Cybersecurity, Jinling Institute of Technology, Nanjing, China
2School of Statistics and Mathematics, Nanjing Audit University, Nanjing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal M, Kayal N, and Saxena N, PRIMES is in P, Ann. Math., 2004, 160(2): 781–793.

Lucas E, Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1878, 1: 184–240, 289–321.

Lehmer D H, On Lucas’s test for the primality of Mersenne’s numbers, J. London Math. Soc., 1935, 10: 162–165.

Bosma W, Explicit primality criteria for h · 2k ± 1, Math. Comp., 1993, 61(203): 97–109.

Berrizbeitia P and Berry T G, Biquadratic reciprocity and a Lucasian primality test, Math. Comp., 2004, 73(247): 1559–1564.

Deng Y and Huang D, Explicit primality criteria for h · 2k ± 1, Journal de Théorie des Nombres de Bordeaux, 2016, 28(1): 55–74.

Marcus D, Number Fields, Springer-Verlag, New York, 1977.

Cohen H, A course in Computational Algebraic Number Theory, third, corrected printing, Graduate Texts in Mathematics, vol. 138, Springer, New York, 1996.