Price’s Law for Spin Fields on a Schwarzschild Background

Annals of PDE - Tập 8 - Trang 1-100 - 2022
Siyuan Ma1,2, Lin Zhang3
1Laboratoire Jacques-Louis Lions, Sorbonne Université Campus Jussieu, Paris, France
2Max Planck Institute for Gravitational Physics, Potsdam, Germany
3College of Mathematics and Statistics, Chongqing University, Chongqing, China

Tóm tắt

In this work, we derive the globally precise late-time asymptotics for the spin- $${\mathfrak {s}}$$ fields on a Schwarzschild background, including the scalar field $$({\mathfrak {s}}=0)$$ , the Maxwell field $$({\mathfrak {s}}=\pm 1)$$ and the linearized gravity $$({\mathfrak {s}}=\pm 2)$$ . The conjectured Price’s law in the physics literature which predicts the sharp rates of decay of the spin $$s=\pm {\mathfrak {s}}$$ components towards the future null infinity as well as in a compact region is shown. Further, we confirm the heuristic claim by Barack and Ori that the spin $$+1, +2$$ components have an extra power of decay at the event horizon than the conjectured Price’s law. The asymptotics are derived via a unified, detailed analysis of the Teukolsky master equation that is satisfied by all these components.

Tài liệu tham khảo

Aksteiner, Steffen, Andersson, Lars, Bäckdahl, Thomas: New identities for linearized gravity on the Kerr spacetime. Physical Review D 99(4), 044043 (2019) Andersson, Lars, Bäckdahl, Thomas, Blue, Pieter: Decay of solutions to the Maxwell equation on the Schwarzschild background. Classical and Quantum Gravity 33(8), 085010 (2016) Andersson, Lars, Bäckdahl, Thomas, Blue, Pieter, Ma, Siyuan: Stability for linearized gravity on the Kerr spacetime, arXiv preprint arXiv:1903.03859 (2019) Andersson, Lars, Blue, Pieter: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Annals of Mathematics 182(3), 787–853 (2015) Andersson, Lars, Blue, Pieter: Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior. Journal of Hyperbolic Differential Equations 12(04), 689–743 (2015) Andersson, Lars, Blue, Pieter, Wang, Jinhua: Morawetz estimate for linearized gravity in Schwarzschild. Ann. Henri Poincaré 21, 761–813 (2020) Andersson, Lars, Ma, Siyuan, Paganini, Claudio, Whiting, Bernard F.: Mode stability on the real axis. Journal of Mathematical Physics 58(7), 072501 (2017) Angelopoulos, Yannis, Aretakis, Stefanos, Gajic, Dejan: Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes. Advances in Mathematics 323, 529–621 (2018) Angelopoulos, Yannis, Aretakis, Stefanos, Gajic, Dejan: A vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary spacetimes. Annals of PDE 4(2), 15 (2018) Angelopoulos, Yannis, Aretakis, Stefanos, Gajic, Dejan: Late-time tails and mode coupling of linear waves on Kerr spacetimes, arXiv preprint arXiv:2102.11884 (2021) Angelopoulos, Yannis, Aretakis, Stefanos, Gajic, Dejan: Price’s law and precise late-time asymptotics for subextremal Reissner–Nordström black holes, arXiv preprint arXiv:2102.11888 (2021) Barack, Leor, Ori, Amos: Late-time decay of gravitational and electromagnetic perturbations along the event horizon. Physical Review D 60(12), 124005 (1999) Bardeen, James M., Press, William H.: Radiation fields in the Schwarzschild background. Journal of Mathematical Physics 14(1), 7–19 (1973) Blue, Pieter: Decay of the Maxwell field on the Schwarzschild manifold. Journal of Hyperbolic Differential Equations 5(04), 807–856 (2008) Blue, Pieter, Soffer, Avy: Semilinear wave equations on the Schwarzschild manifold I: Local decay estimates. Advances in Differential Equations 8(5), 595–614 (2003) Blue, Pieter, Soffer, Avy: A space-time integral estimate for a large data semi-linear wave equation on the Schwarzschild manifold. Letters in Mathematical Physics 81(3), 227–238 (2007) Blue, Pieter, Sterbenz, Jacob: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Communications in mathematical physics 268, 481–504 (2006) Boyer, Robert H., Lindquist, Richard W.: Maximal analytic extension of the Kerr metric. J. Mathematical Phys. 8, 265–281 (1967) Chandrasekhar, Subrahmanyan: On the equations governing the perturbations of the Schwarzschild black hole, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 343, The Royal Society, (1975), pp. 289–298 Christodoulou, Demetrios: Global solutions of nonlinear hyperbolic equations for small initial data. Communications on Pure and Applied Mathematics 39(2), 267–282 (1986) Christodoulou, Demetrios, Klainerman, Sergiu: The global gonlinear gtability of the Minkowski gpace, Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton, NJ (1993) Csukás, Károly., Rácz, István, Zsolt Tóth, Gábor.: Numerical investigation of the dynamics of linear spin s fields on a Kerr background: Late-time tails of spin \(s=\pm 1\), \(\pm 2\) fields. Physical Review D 100(10), 104025 (2019) Dafermos, Mihalis, Holzegel, Gustav, Rodnianski, Igor: Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case \(|a|\ll m \). Annals of PDE 5(1), 2 (2019) Dafermos, Mihalis, Holzegel, Gustav, Rodnianski, Igor: The linear stability of the Schwarzschild solution to gravitational perturbations. Acta Mathematica 222(1), 1–214 (2019) Dafermos, Mihalis, Rodnianski, Igor: The red-shift effect and radiation decay on black hole spacetimes. Communications on Pure and Applied Mathematics 62(7), 859–919 (2009) Dafermos, Mihalis, Rodnianski, Igor: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, pp. 421–432. World Scientific, XVIth International Congress On Mathematical Physics (2010) Dafermos, Mihalis, Rodnianski, Igor, Shlapentokh-Rothman, Yakov: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \(|a|< m\). Annals of Mathematics 183(3), 787–913 (2016) Donninger, Roland, Schlag, Wilhelm, Soffer, Avy: A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta. Advances in Mathematics 226(1), 484–540 (2011) Donninger, Roland, Schlag, Wilhelm, Soffer, Avy: On pointwise decay of linear waves on a Schwarzschild black hole background. Communications in Mathematical Physics 309(1), 51–86 (2012) Eastwood, Michael, Tod, Paul: Edth-a differential operator on the sphere, Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 92. No. 2. Cambridge University Press, (1982) Fackerell, E.D., Ipser, J.R.: Weak electromagnetic fields around a rotating black hole. Phys. Rev. D. 5, 2455–2458 (1972) Finster, Felix, Kamran, Niky, Smoller, Joel, Yau, Shing-Tung.: Decay of solutions of the wave equation in the Kerr geometry. Communications in Mathematical Physics 264(2), 465–503 (2006) Finster, Felix, Smoller, Joel: Linear stability of the non-extreme Kerr black hole. Advances in Theoretical and Mathematical Physics 21(8), 1991–2085 (2017) Geroch, Robert, Held, Alan, Penrose, Roger: A space-time calculus based on pairs of null directions. Journal of Mathematical Physics 14(7), 874–881 (1973) Giorgi, Elena: The linear stability of Reissner-Nordström spacetime: the full subextremal range, arXiv preprint arXiv:1910.05630 (2019) Gleiser, Reinaldo J., Price, Richard H., Pullin, Jorge: Late-time tails in the Kerr spacetime. Classical and Quantum Gravity 25(7), 072001 (2008) Gudapati, Nishanth: A positive-definite energy functional for axially symmetric Maxwell’s equations on Kerr-de Sitter black hole spacetimes, arXiv preprint arXiv:1710.11294 (2017) Gudapati, Nishanth: A conserved energy for axially symmetric Newman-Penrose-Maxwell scalars on Kerr black holes. Proceedings of the Royal Society A 475(2221), 20180686 (2019) Häfner, Dietrich, Hintz, Peter, Vasy, András: Linear stability of slowly rotating Kerr black holes, arXiv preprint arXiv:1906.00860 (2019) Hawking, S.W., Hartle, J.B.: Energy and angular momentum flow into a black hole. Communications in Mathematical Physics 27, 283–290 (1972) Hintz, Peter: A sharp version of Price’s law for wave decay on asymptotically flat spacetimes, arXiv preprint arXiv:2004.01664 (2020) Hintz, Peter, Vasy, András: The global non-linear stability of the Kerr-de Sitter family of black holes. Acta Mathematica 220, 1–206 (2018) Hod, Shahar: Mode-coupling in rotating gravitational collapse of a scalar field. Physical Review D 61(2), 024033 (1999) Hung, Pei-Ken: The linear stability of the Schwarzschild spacetime in the harmonic gauge: odd part, arXiv preprint arXiv:1803.03881 (2018) Hung, Pei-Ken: The linear stability of the Schwarzschild spacetime in the harmonic gauge: odd part, arXiv preprint arXiv:1909.06733 (2019) Hung, Pei-Ken, Keller, Jordan, Wang, Mu-Tao: Linear stability of Schwarzschild spacetime: The Cauchy problem of metric coefficients, arXiv preprint arXiv:1702.02843 (2017) Johnson, Thomas William: The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge. Annals of PDE 5(2), 13 (2019) Karkowski, Janusz, Świerczyński, Zdobysław, Malec, Edward: Comments on tails in Schwarzschild spacetimes. Classical and Quantum Gravity 21(6), 1303 (2004) Kerr, R.: Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters 11(5), 237 (1963) Klainerman, Sergiu: The null condition and global existence to nonlinear wave equations. Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, 293–326 (1986) Klainerman, Sergiu, Szeftel, Jérémie: Global nonlinear stability of Schwarzschild spacetime under polarized perturbations, Annals of Math Studies, 210. Princeton University Press, Princeton, NJ, (2020), xviii+856pp Lindblad, Hans, Rodnianski, Igor: The global stability of Minkowski space-time in harmonic gauge, Annals of Mathematics (2010), 1401–1477 Ma, Siyuan: Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole I: Maxwell field, Annales Henri Poincaré – A Journal of Theoretical and Mathematical Physics 21(3), (2020) Ma, Siyuan: Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: linearized gravity. Communications in Mathematical Physics 377, 2489–2551 (2020) Ma, Siyuan: Almost Price’s law in Schwarzschild and decay estimates in Kerr for Maxwell field. Journal of Differential Equations 339, 1–89 (2022) Ma, Siyuan, Zhang, Lin: Sharp decay estimates for massless Dirac fields on a Schwarzschild background. Journal of Functional Analysis 282(6), 109375 (2022) Marzuola, Jeremy, Metcalfe, Jason, Tataru, Daniel, Tohaneanu, Mihai: Strichartz estimates on Schwarzschild black hole backgrounds. Communications in Mathematical Physics 293(1), 37 (2010) Metcalfe, Jason, Tataru, Daniel, Tohaneanu, Mihai: Price’s law on nonstationary space-times. Advances in Mathematics 230(3), 995–1028 (2012) Metcalfe, Jason, Tataru, Daniel, Tohaneanu, Mihai: Pointwise decay for the Maxwell field on black hole space-times. Advances in Mathematics 316, 53–93 (2017) Morawetz, Cathleen S: Time decay for the nonlinear Klein-Gordon equation, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 306, The Royal Society, (1968), pp. 291–296 Newman, Ezra, Penrose, Roger: An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics 3(3), 566–578 (1962) Newman, Ezra, Penrose, Roger: Errata: an approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics 4(7), 998–998 (1963) Pasqualotto, Federico: The spin \(\pm 1\) Teukolsky equations and the Maxwell system on Schwarzschild, Annales Henri Poincaré, vol. 20, Springer, (2019), pp. 1263–1323 Penrose, Roger, Rindler, Wolfgang: Spinors and space-time: Volume 1, Two-spinor calculus and relativistic fields, vol. 1. Cambridge University Press (1984) Price, Richard H.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Physical Review D 5(10), 2419 (1972) Price, Richard H.: Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields. Physical Review D 5(10), 2439 (1972) Price, Richard H., Burko, Lior M.: Late time tails from momentarily stationary, compact initial data in Schwarzschild spacetimes. Physical Review D 70(8), 084039 (2004) Regge, Tullio, Wheeler, John A.: Stability of a Schwarzschild singularity. Physical Review 108(4), 1063 (1957) Schwarzschild, K.: Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Phys.-Math. Klasse, 424-434 (1916), 1916 Shlapentokh-Rothman, Yakov: Quantitative mode stability for the wave equation on the Kerr Spacetime. Annales Henri Poincaré 16, 289–345 (2015) Shlapentokh-Rothman, Yakov, Teixeira da Costa, Rita: Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range \(|a|< m\): frequency space analysis, arXiv preprint arXiv:2007.07211 (2020) Starobinsky, A. A., Churilov, S. M.: Amplification of electromagnetic and gravitational waves scattered by a rotating black hole, Zh. Eksp. Teor. Fiz 653, (1973) Sterbenz, Jacob, Tataru, Daniel: Local energy decay for Maxwell fields part I: Spherically symmetric black-hole backgrounds, International Mathematics Research Notices 2015(11), (2015) Tataru, Daniel: Local decay of waves on asymptotically flat stationary space-times. American Journal of Mathematics 135(2), 361–401 (2013) Tataru, Daniel, Tohaneanu, Mihai: A local energy estimate on Kerr black hole backgrounds. International Mathematics Research Notices 2011(2), 248–292 (2011) Teixeira da Costa, Rita Mode stability for the Teukolsky equation on extremal and subextremal Kerr spacetimes, arXiv preprint arXiv:1910.02854 (2019) Teukolsky, S.A.: Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations. Physical Review Letters 29(16), 1114–1118 (1972) Teukolsky, S.A.: Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophysical J. 185, 635–648 (1973) Teukolsky, S.A., Press, W.H.: Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnetic radiation. Astrophysical J. 193, 443–461 (1974) Tohaneanu, Mihai: Strichartz estimates on Kerr black hole backgrounds. Transactions of the American Mathematical Society 364(2), 689–702 (2012) Whiting, Bernard F.: Mode stability of the Kerr black hole. Journal of Mathematical Physics 30(6), 1301–1305 (1989)